| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumneg.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
isumneg.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
isumneg.3 |
|- ( ph -> sum_ k e. Z A e. CC ) |
| 4 |
|
isumneg.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
| 5 |
|
isumneg.5 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 6 |
|
isumneg.6 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| 7 |
5
|
mulm1d |
|- ( ( ph /\ k e. Z ) -> ( -u 1 x. A ) = -u A ) |
| 8 |
7
|
eqcomd |
|- ( ( ph /\ k e. Z ) -> -u A = ( -u 1 x. A ) ) |
| 9 |
8
|
sumeq2dv |
|- ( ph -> sum_ k e. Z -u A = sum_ k e. Z ( -u 1 x. A ) ) |
| 10 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 11 |
10
|
negcld |
|- ( ph -> -u 1 e. CC ) |
| 12 |
1 2 4 5 6 11
|
isummulc2 |
|- ( ph -> ( -u 1 x. sum_ k e. Z A ) = sum_ k e. Z ( -u 1 x. A ) ) |
| 13 |
3
|
mulm1d |
|- ( ph -> ( -u 1 x. sum_ k e. Z A ) = -u sum_ k e. Z A ) |
| 14 |
9 12 13
|
3eqtr2d |
|- ( ph -> sum_ k e. Z -u A = -u sum_ k e. Z A ) |