| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isumnn0nn.1 |  |-  ( k = 0 -> A = B ) | 
						
							| 2 |  | isumnn0nn.2 |  |-  ( ( ph /\ k e. NN0 ) -> ( F ` k ) = A ) | 
						
							| 3 |  | isumnn0nn.3 |  |-  ( ( ph /\ k e. NN0 ) -> A e. CC ) | 
						
							| 4 |  | isumnn0nn.4 |  |-  ( ph -> seq 0 ( + , F ) e. dom ~~> ) | 
						
							| 5 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 6 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 7 | 5 6 2 3 4 | isum1p |  |-  ( ph -> sum_ k e. NN0 A = ( ( F ` 0 ) + sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) A ) ) | 
						
							| 8 |  | fveq2 |  |-  ( k = 0 -> ( F ` k ) = ( F ` 0 ) ) | 
						
							| 9 | 8 1 | eqeq12d |  |-  ( k = 0 -> ( ( F ` k ) = A <-> ( F ` 0 ) = B ) ) | 
						
							| 10 | 2 | ralrimiva |  |-  ( ph -> A. k e. NN0 ( F ` k ) = A ) | 
						
							| 11 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 12 | 11 | a1i |  |-  ( ph -> 0 e. NN0 ) | 
						
							| 13 | 9 10 12 | rspcdva |  |-  ( ph -> ( F ` 0 ) = B ) | 
						
							| 14 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 15 | 14 | fveq2i |  |-  ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) | 
						
							| 16 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 17 | 15 16 | eqtr4i |  |-  ( ZZ>= ` ( 0 + 1 ) ) = NN | 
						
							| 18 | 17 | sumeq1i |  |-  sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) A = sum_ k e. NN A | 
						
							| 19 | 18 | a1i |  |-  ( ph -> sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) A = sum_ k e. NN A ) | 
						
							| 20 | 13 19 | oveq12d |  |-  ( ph -> ( ( F ` 0 ) + sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) A ) = ( B + sum_ k e. NN A ) ) | 
						
							| 21 | 7 20 | eqtrd |  |-  ( ph -> sum_ k e. NN0 A = ( B + sum_ k e. NN A ) ) |