Step |
Hyp |
Ref |
Expression |
1 |
|
isumrecl.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumrecl.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
isumrecl.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
4 |
|
isumrecl.4 |
|- ( ( ph /\ k e. Z ) -> A e. RR ) |
5 |
|
isumrecl.5 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
6 |
4
|
recnd |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
7 |
1 2 3 6 5
|
isumclim2 |
|- ( ph -> seq M ( + , F ) ~~> sum_ k e. Z A ) |
8 |
3 4
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
9 |
1 2 8
|
serfre |
|- ( ph -> seq M ( + , F ) : Z --> RR ) |
10 |
9
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. RR ) |
11 |
1 2 7 10
|
climrecl |
|- ( ph -> sum_ k e. Z A e. RR ) |