Step |
Hyp |
Ref |
Expression |
1 |
|
isumshft.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumshft.2 |
|- W = ( ZZ>= ` ( M + K ) ) |
3 |
|
isumshft.3 |
|- ( j = ( K + k ) -> A = B ) |
4 |
|
isumshft.4 |
|- ( ph -> K e. ZZ ) |
5 |
|
isumshft.5 |
|- ( ph -> M e. ZZ ) |
6 |
|
isumshft.6 |
|- ( ( ph /\ j e. W ) -> A e. CC ) |
7 |
5 4
|
zaddcld |
|- ( ph -> ( M + K ) e. ZZ ) |
8 |
2
|
eleq2i |
|- ( m e. W <-> m e. ( ZZ>= ` ( M + K ) ) ) |
9 |
4
|
zcnd |
|- ( ph -> K e. CC ) |
10 |
|
eluzelcn |
|- ( m e. ( ZZ>= ` ( M + K ) ) -> m e. CC ) |
11 |
10 2
|
eleq2s |
|- ( m e. W -> m e. CC ) |
12 |
1
|
fvexi |
|- Z e. _V |
13 |
12
|
mptex |
|- ( k e. Z |-> B ) e. _V |
14 |
13
|
shftval |
|- ( ( K e. CC /\ m e. CC ) -> ( ( ( k e. Z |-> B ) shift K ) ` m ) = ( ( k e. Z |-> B ) ` ( m - K ) ) ) |
15 |
9 11 14
|
syl2an |
|- ( ( ph /\ m e. W ) -> ( ( ( k e. Z |-> B ) shift K ) ` m ) = ( ( k e. Z |-> B ) ` ( m - K ) ) ) |
16 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
17 |
|
eqid |
|- ( k e. Z |-> B ) = ( k e. Z |-> B ) |
18 |
17
|
fvmpt2i |
|- ( k e. Z -> ( ( k e. Z |-> B ) ` k ) = ( _I ` B ) ) |
19 |
16 18
|
syl |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> B ) ` k ) = ( _I ` B ) ) |
20 |
|
eluzelcn |
|- ( k e. ( ZZ>= ` M ) -> k e. CC ) |
21 |
20 1
|
eleq2s |
|- ( k e. Z -> k e. CC ) |
22 |
|
addcom |
|- ( ( K e. CC /\ k e. CC ) -> ( K + k ) = ( k + K ) ) |
23 |
9 21 22
|
syl2an |
|- ( ( ph /\ k e. Z ) -> ( K + k ) = ( k + K ) ) |
24 |
|
id |
|- ( k e. Z -> k e. Z ) |
25 |
24 1
|
eleqtrdi |
|- ( k e. Z -> k e. ( ZZ>= ` M ) ) |
26 |
|
eluzadd |
|- ( ( k e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( k + K ) e. ( ZZ>= ` ( M + K ) ) ) |
27 |
25 4 26
|
syl2anr |
|- ( ( ph /\ k e. Z ) -> ( k + K ) e. ( ZZ>= ` ( M + K ) ) ) |
28 |
23 27
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( K + k ) e. ( ZZ>= ` ( M + K ) ) ) |
29 |
28 2
|
eleqtrrdi |
|- ( ( ph /\ k e. Z ) -> ( K + k ) e. W ) |
30 |
|
eqid |
|- ( j e. W |-> A ) = ( j e. W |-> A ) |
31 |
3 30
|
fvmpti |
|- ( ( K + k ) e. W -> ( ( j e. W |-> A ) ` ( K + k ) ) = ( _I ` B ) ) |
32 |
29 31
|
syl |
|- ( ( ph /\ k e. Z ) -> ( ( j e. W |-> A ) ` ( K + k ) ) = ( _I ` B ) ) |
33 |
19 32
|
eqtr4d |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) ) |
34 |
33
|
ralrimiva |
|- ( ph -> A. k e. Z ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) ) |
35 |
|
nffvmpt1 |
|- F/_ k ( ( k e. Z |-> B ) ` n ) |
36 |
35
|
nfeq1 |
|- F/ k ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) |
37 |
|
fveq2 |
|- ( k = n -> ( ( k e. Z |-> B ) ` k ) = ( ( k e. Z |-> B ) ` n ) ) |
38 |
|
oveq2 |
|- ( k = n -> ( K + k ) = ( K + n ) ) |
39 |
38
|
fveq2d |
|- ( k = n -> ( ( j e. W |-> A ) ` ( K + k ) ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) |
40 |
37 39
|
eqeq12d |
|- ( k = n -> ( ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) <-> ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) ) |
41 |
36 40
|
rspc |
|- ( n e. Z -> ( A. k e. Z ( ( k e. Z |-> B ) ` k ) = ( ( j e. W |-> A ) ` ( K + k ) ) -> ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) ) |
42 |
34 41
|
mpan9 |
|- ( ( ph /\ n e. Z ) -> ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) |
43 |
42
|
ralrimiva |
|- ( ph -> A. n e. Z ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) ) |
44 |
5
|
adantr |
|- ( ( ph /\ m e. W ) -> M e. ZZ ) |
45 |
4
|
adantr |
|- ( ( ph /\ m e. W ) -> K e. ZZ ) |
46 |
|
simpr |
|- ( ( ph /\ m e. W ) -> m e. W ) |
47 |
46 2
|
eleqtrdi |
|- ( ( ph /\ m e. W ) -> m e. ( ZZ>= ` ( M + K ) ) ) |
48 |
|
eluzsub |
|- ( ( M e. ZZ /\ K e. ZZ /\ m e. ( ZZ>= ` ( M + K ) ) ) -> ( m - K ) e. ( ZZ>= ` M ) ) |
49 |
44 45 47 48
|
syl3anc |
|- ( ( ph /\ m e. W ) -> ( m - K ) e. ( ZZ>= ` M ) ) |
50 |
49 1
|
eleqtrrdi |
|- ( ( ph /\ m e. W ) -> ( m - K ) e. Z ) |
51 |
|
fveq2 |
|- ( n = ( m - K ) -> ( ( k e. Z |-> B ) ` n ) = ( ( k e. Z |-> B ) ` ( m - K ) ) ) |
52 |
|
oveq2 |
|- ( n = ( m - K ) -> ( K + n ) = ( K + ( m - K ) ) ) |
53 |
52
|
fveq2d |
|- ( n = ( m - K ) -> ( ( j e. W |-> A ) ` ( K + n ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) |
54 |
51 53
|
eqeq12d |
|- ( n = ( m - K ) -> ( ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) <-> ( ( k e. Z |-> B ) ` ( m - K ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) ) |
55 |
54
|
rspccva |
|- ( ( A. n e. Z ( ( k e. Z |-> B ) ` n ) = ( ( j e. W |-> A ) ` ( K + n ) ) /\ ( m - K ) e. Z ) -> ( ( k e. Z |-> B ) ` ( m - K ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) |
56 |
43 50 55
|
syl2an2r |
|- ( ( ph /\ m e. W ) -> ( ( k e. Z |-> B ) ` ( m - K ) ) = ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) ) |
57 |
|
pncan3 |
|- ( ( K e. CC /\ m e. CC ) -> ( K + ( m - K ) ) = m ) |
58 |
9 11 57
|
syl2an |
|- ( ( ph /\ m e. W ) -> ( K + ( m - K ) ) = m ) |
59 |
58
|
fveq2d |
|- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` ( K + ( m - K ) ) ) = ( ( j e. W |-> A ) ` m ) ) |
60 |
15 56 59
|
3eqtrrd |
|- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` m ) = ( ( ( k e. Z |-> B ) shift K ) ` m ) ) |
61 |
8 60
|
sylan2br |
|- ( ( ph /\ m e. ( ZZ>= ` ( M + K ) ) ) -> ( ( j e. W |-> A ) ` m ) = ( ( ( k e. Z |-> B ) shift K ) ` m ) ) |
62 |
7 61
|
seqfeq |
|- ( ph -> seq ( M + K ) ( + , ( j e. W |-> A ) ) = seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ) |
63 |
62
|
breq1d |
|- ( ph -> ( seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x <-> seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ~~> x ) ) |
64 |
13
|
isershft |
|- ( ( M e. ZZ /\ K e. ZZ ) -> ( seq M ( + , ( k e. Z |-> B ) ) ~~> x <-> seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ~~> x ) ) |
65 |
5 4 64
|
syl2anc |
|- ( ph -> ( seq M ( + , ( k e. Z |-> B ) ) ~~> x <-> seq ( M + K ) ( + , ( ( k e. Z |-> B ) shift K ) ) ~~> x ) ) |
66 |
63 65
|
bitr4d |
|- ( ph -> ( seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x <-> seq M ( + , ( k e. Z |-> B ) ) ~~> x ) ) |
67 |
66
|
iotabidv |
|- ( ph -> ( iota x seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x ) = ( iota x seq M ( + , ( k e. Z |-> B ) ) ~~> x ) ) |
68 |
|
df-fv |
|- ( ~~> ` seq ( M + K ) ( + , ( j e. W |-> A ) ) ) = ( iota x seq ( M + K ) ( + , ( j e. W |-> A ) ) ~~> x ) |
69 |
|
df-fv |
|- ( ~~> ` seq M ( + , ( k e. Z |-> B ) ) ) = ( iota x seq M ( + , ( k e. Z |-> B ) ) ~~> x ) |
70 |
67 68 69
|
3eqtr4g |
|- ( ph -> ( ~~> ` seq ( M + K ) ( + , ( j e. W |-> A ) ) ) = ( ~~> ` seq M ( + , ( k e. Z |-> B ) ) ) ) |
71 |
|
eqidd |
|- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` m ) = ( ( j e. W |-> A ) ` m ) ) |
72 |
6
|
fmpttd |
|- ( ph -> ( j e. W |-> A ) : W --> CC ) |
73 |
72
|
ffvelrnda |
|- ( ( ph /\ m e. W ) -> ( ( j e. W |-> A ) ` m ) e. CC ) |
74 |
2 7 71 73
|
isum |
|- ( ph -> sum_ m e. W ( ( j e. W |-> A ) ` m ) = ( ~~> ` seq ( M + K ) ( + , ( j e. W |-> A ) ) ) ) |
75 |
|
eqidd |
|- ( ( ph /\ n e. Z ) -> ( ( k e. Z |-> B ) ` n ) = ( ( k e. Z |-> B ) ` n ) ) |
76 |
29
|
ralrimiva |
|- ( ph -> A. k e. Z ( K + k ) e. W ) |
77 |
38
|
eleq1d |
|- ( k = n -> ( ( K + k ) e. W <-> ( K + n ) e. W ) ) |
78 |
77
|
rspccva |
|- ( ( A. k e. Z ( K + k ) e. W /\ n e. Z ) -> ( K + n ) e. W ) |
79 |
76 78
|
sylan |
|- ( ( ph /\ n e. Z ) -> ( K + n ) e. W ) |
80 |
|
ffvelrn |
|- ( ( ( j e. W |-> A ) : W --> CC /\ ( K + n ) e. W ) -> ( ( j e. W |-> A ) ` ( K + n ) ) e. CC ) |
81 |
72 79 80
|
syl2an2r |
|- ( ( ph /\ n e. Z ) -> ( ( j e. W |-> A ) ` ( K + n ) ) e. CC ) |
82 |
42 81
|
eqeltrd |
|- ( ( ph /\ n e. Z ) -> ( ( k e. Z |-> B ) ` n ) e. CC ) |
83 |
1 5 75 82
|
isum |
|- ( ph -> sum_ n e. Z ( ( k e. Z |-> B ) ` n ) = ( ~~> ` seq M ( + , ( k e. Z |-> B ) ) ) ) |
84 |
70 74 83
|
3eqtr4d |
|- ( ph -> sum_ m e. W ( ( j e. W |-> A ) ` m ) = sum_ n e. Z ( ( k e. Z |-> B ) ` n ) ) |
85 |
|
sumfc |
|- sum_ m e. W ( ( j e. W |-> A ) ` m ) = sum_ j e. W A |
86 |
|
sumfc |
|- sum_ n e. Z ( ( k e. Z |-> B ) ` n ) = sum_ k e. Z B |
87 |
84 85 86
|
3eqtr3g |
|- ( ph -> sum_ j e. W A = sum_ k e. Z B ) |