| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumsplit.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
isumsplit.2 |
|- W = ( ZZ>= ` N ) |
| 3 |
|
isumsplit.3 |
|- ( ph -> N e. Z ) |
| 4 |
|
isumsplit.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
| 5 |
|
isumsplit.5 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 6 |
|
isumsplit.6 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| 7 |
3 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 8 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 9 |
7 8
|
syl |
|- ( ph -> M e. ZZ ) |
| 10 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 11 |
7 10
|
syl |
|- ( ph -> N e. ZZ ) |
| 12 |
|
uzss |
|- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 13 |
7 12
|
syl |
|- ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 14 |
13 2 1
|
3sstr4g |
|- ( ph -> W C_ Z ) |
| 15 |
14
|
sselda |
|- ( ( ph /\ k e. W ) -> k e. Z ) |
| 16 |
15 4
|
syldan |
|- ( ( ph /\ k e. W ) -> ( F ` k ) = A ) |
| 17 |
15 5
|
syldan |
|- ( ( ph /\ k e. W ) -> A e. CC ) |
| 18 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 19 |
1 3 18
|
iserex |
|- ( ph -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
| 20 |
6 19
|
mpbid |
|- ( ph -> seq N ( + , F ) e. dom ~~> ) |
| 21 |
2 11 16 17 20
|
isumclim2 |
|- ( ph -> seq N ( + , F ) ~~> sum_ k e. W A ) |
| 22 |
|
fzfid |
|- ( ph -> ( M ... ( N - 1 ) ) e. Fin ) |
| 23 |
|
elfzuz |
|- ( k e. ( M ... ( N - 1 ) ) -> k e. ( ZZ>= ` M ) ) |
| 24 |
23 1
|
eleqtrrdi |
|- ( k e. ( M ... ( N - 1 ) ) -> k e. Z ) |
| 25 |
24 5
|
sylan2 |
|- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> A e. CC ) |
| 26 |
22 25
|
fsumcl |
|- ( ph -> sum_ k e. ( M ... ( N - 1 ) ) A e. CC ) |
| 27 |
15 18
|
syldan |
|- ( ( ph /\ k e. W ) -> ( F ` k ) e. CC ) |
| 28 |
2 11 27
|
serf |
|- ( ph -> seq N ( + , F ) : W --> CC ) |
| 29 |
28
|
ffvelcdmda |
|- ( ( ph /\ j e. W ) -> ( seq N ( + , F ) ` j ) e. CC ) |
| 30 |
9
|
zred |
|- ( ph -> M e. RR ) |
| 31 |
30
|
ltm1d |
|- ( ph -> ( M - 1 ) < M ) |
| 32 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
| 33 |
|
fzn |
|- ( ( M e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
| 34 |
9 32 33
|
syl2anc2 |
|- ( ph -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
| 35 |
31 34
|
mpbid |
|- ( ph -> ( M ... ( M - 1 ) ) = (/) ) |
| 36 |
35
|
sumeq1d |
|- ( ph -> sum_ k e. ( M ... ( M - 1 ) ) A = sum_ k e. (/) A ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ j e. W ) -> sum_ k e. ( M ... ( M - 1 ) ) A = sum_ k e. (/) A ) |
| 38 |
|
sum0 |
|- sum_ k e. (/) A = 0 |
| 39 |
37 38
|
eqtrdi |
|- ( ( ph /\ j e. W ) -> sum_ k e. ( M ... ( M - 1 ) ) A = 0 ) |
| 40 |
39
|
oveq1d |
|- ( ( ph /\ j e. W ) -> ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) = ( 0 + ( seq M ( + , F ) ` j ) ) ) |
| 41 |
14
|
sselda |
|- ( ( ph /\ j e. W ) -> j e. Z ) |
| 42 |
1 9 18
|
serf |
|- ( ph -> seq M ( + , F ) : Z --> CC ) |
| 43 |
42
|
ffvelcdmda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. CC ) |
| 44 |
41 43
|
syldan |
|- ( ( ph /\ j e. W ) -> ( seq M ( + , F ) ` j ) e. CC ) |
| 45 |
44
|
addlidd |
|- ( ( ph /\ j e. W ) -> ( 0 + ( seq M ( + , F ) ` j ) ) = ( seq M ( + , F ) ` j ) ) |
| 46 |
40 45
|
eqtr2d |
|- ( ( ph /\ j e. W ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) ) |
| 47 |
|
oveq1 |
|- ( N = M -> ( N - 1 ) = ( M - 1 ) ) |
| 48 |
47
|
oveq2d |
|- ( N = M -> ( M ... ( N - 1 ) ) = ( M ... ( M - 1 ) ) ) |
| 49 |
48
|
sumeq1d |
|- ( N = M -> sum_ k e. ( M ... ( N - 1 ) ) A = sum_ k e. ( M ... ( M - 1 ) ) A ) |
| 50 |
|
seqeq1 |
|- ( N = M -> seq N ( + , F ) = seq M ( + , F ) ) |
| 51 |
50
|
fveq1d |
|- ( N = M -> ( seq N ( + , F ) ` j ) = ( seq M ( + , F ) ` j ) ) |
| 52 |
49 51
|
oveq12d |
|- ( N = M -> ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) = ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) ) |
| 53 |
52
|
eqeq2d |
|- ( N = M -> ( ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) <-> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) ) ) |
| 54 |
46 53
|
syl5ibrcom |
|- ( ( ph /\ j e. W ) -> ( N = M -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) ) |
| 55 |
|
addcl |
|- ( ( k e. CC /\ m e. CC ) -> ( k + m ) e. CC ) |
| 56 |
55
|
adantl |
|- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ ( k e. CC /\ m e. CC ) ) -> ( k + m ) e. CC ) |
| 57 |
|
addass |
|- ( ( k e. CC /\ m e. CC /\ x e. CC ) -> ( ( k + m ) + x ) = ( k + ( m + x ) ) ) |
| 58 |
57
|
adantl |
|- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ ( k e. CC /\ m e. CC /\ x e. CC ) ) -> ( ( k + m ) + x ) = ( k + ( m + x ) ) ) |
| 59 |
|
simplr |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> j e. W ) |
| 60 |
|
simpll |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ph ) |
| 61 |
11
|
zcnd |
|- ( ph -> N e. CC ) |
| 62 |
|
ax-1cn |
|- 1 e. CC |
| 63 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
| 64 |
61 62 63
|
sylancl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 65 |
64
|
eqcomd |
|- ( ph -> N = ( ( N - 1 ) + 1 ) ) |
| 66 |
60 65
|
syl |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N = ( ( N - 1 ) + 1 ) ) |
| 67 |
66
|
fveq2d |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ZZ>= ` N ) = ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
| 68 |
2 67
|
eqtrid |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> W = ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
| 69 |
59 68
|
eleqtrd |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> j e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
| 70 |
9
|
adantr |
|- ( ( ph /\ j e. W ) -> M e. ZZ ) |
| 71 |
|
eluzp1m1 |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 72 |
70 71
|
sylan |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 73 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
| 74 |
73 1
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
| 75 |
60 74 18
|
syl2an |
|- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 76 |
56 58 69 72 75
|
seqsplit |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( ( seq M ( + , F ) ` ( N - 1 ) ) + ( seq ( ( N - 1 ) + 1 ) ( + , F ) ` j ) ) ) |
| 77 |
60 24 4
|
syl2an |
|- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` k ) = A ) |
| 78 |
60 24 5
|
syl2an |
|- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> A e. CC ) |
| 79 |
77 72 78
|
fsumser |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ... ( N - 1 ) ) A = ( seq M ( + , F ) ` ( N - 1 ) ) ) |
| 80 |
66
|
seqeq1d |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> seq N ( + , F ) = seq ( ( N - 1 ) + 1 ) ( + , F ) ) |
| 81 |
80
|
fveq1d |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq N ( + , F ) ` j ) = ( seq ( ( N - 1 ) + 1 ) ( + , F ) ` j ) ) |
| 82 |
79 81
|
oveq12d |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) = ( ( seq M ( + , F ) ` ( N - 1 ) ) + ( seq ( ( N - 1 ) + 1 ) ( + , F ) ` j ) ) ) |
| 83 |
76 82
|
eqtr4d |
|- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) |
| 84 |
83
|
ex |
|- ( ( ph /\ j e. W ) -> ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) ) |
| 85 |
|
uzp1 |
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 86 |
7 85
|
syl |
|- ( ph -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 87 |
86
|
adantr |
|- ( ( ph /\ j e. W ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 88 |
54 84 87
|
mpjaod |
|- ( ( ph /\ j e. W ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) |
| 89 |
2 11 21 26 6 29 88
|
climaddc2 |
|- ( ph -> seq M ( + , F ) ~~> ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. W A ) ) |
| 90 |
1 9 4 5 89
|
isumclim |
|- ( ph -> sum_ k e. Z A = ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. W A ) ) |