Metamath Proof Explorer


Theorem isumsup

Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses isumsup.1
|- Z = ( ZZ>= ` M )
isumsup.2
|- G = seq M ( + , F )
isumsup.3
|- ( ph -> M e. ZZ )
isumsup.4
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
isumsup.5
|- ( ( ph /\ k e. Z ) -> A e. RR )
isumsup.6
|- ( ( ph /\ k e. Z ) -> 0 <_ A )
isumsup.7
|- ( ph -> E. x e. RR A. j e. Z ( G ` j ) <_ x )
Assertion isumsup
|- ( ph -> sum_ k e. Z A = sup ( ran G , RR , < ) )

Proof

Step Hyp Ref Expression
1 isumsup.1
 |-  Z = ( ZZ>= ` M )
2 isumsup.2
 |-  G = seq M ( + , F )
3 isumsup.3
 |-  ( ph -> M e. ZZ )
4 isumsup.4
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
5 isumsup.5
 |-  ( ( ph /\ k e. Z ) -> A e. RR )
6 isumsup.6
 |-  ( ( ph /\ k e. Z ) -> 0 <_ A )
7 isumsup.7
 |-  ( ph -> E. x e. RR A. j e. Z ( G ` j ) <_ x )
8 5 recnd
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
9 1 2 3 4 5 6 7 isumsup2
 |-  ( ph -> G ~~> sup ( ran G , RR , < ) )
10 2 9 eqbrtrrid
 |-  ( ph -> seq M ( + , F ) ~~> sup ( ran G , RR , < ) )
11 1 3 4 8 10 isumclim
 |-  ( ph -> sum_ k e. Z A = sup ( ran G , RR , < ) )