Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isumsup.1 | |- Z = ( ZZ>= ` M ) |
|
isumsup.2 | |- G = seq M ( + , F ) |
||
isumsup.3 | |- ( ph -> M e. ZZ ) |
||
isumsup.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
isumsup.5 | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
||
isumsup.6 | |- ( ( ph /\ k e. Z ) -> 0 <_ A ) |
||
isumsup.7 | |- ( ph -> E. x e. RR A. j e. Z ( G ` j ) <_ x ) |
||
Assertion | isumsup | |- ( ph -> sum_ k e. Z A = sup ( ran G , RR , < ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumsup.1 | |- Z = ( ZZ>= ` M ) |
|
2 | isumsup.2 | |- G = seq M ( + , F ) |
|
3 | isumsup.3 | |- ( ph -> M e. ZZ ) |
|
4 | isumsup.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
5 | isumsup.5 | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
|
6 | isumsup.6 | |- ( ( ph /\ k e. Z ) -> 0 <_ A ) |
|
7 | isumsup.7 | |- ( ph -> E. x e. RR A. j e. Z ( G ` j ) <_ x ) |
|
8 | 5 | recnd | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
9 | 1 2 3 4 5 6 7 | isumsup2 | |- ( ph -> G ~~> sup ( ran G , RR , < ) ) |
10 | 2 9 | eqbrtrrid | |- ( ph -> seq M ( + , F ) ~~> sup ( ran G , RR , < ) ) |
11 | 1 3 4 8 10 | isumclim | |- ( ph -> sum_ k e. Z A = sup ( ran G , RR , < ) ) |