Metamath Proof Explorer


Theorem isumsup2

Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses isumsup.1
|- Z = ( ZZ>= ` M )
isumsup.2
|- G = seq M ( + , F )
isumsup.3
|- ( ph -> M e. ZZ )
isumsup.4
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
isumsup.5
|- ( ( ph /\ k e. Z ) -> A e. RR )
isumsup.6
|- ( ( ph /\ k e. Z ) -> 0 <_ A )
isumsup.7
|- ( ph -> E. x e. RR A. j e. Z ( G ` j ) <_ x )
Assertion isumsup2
|- ( ph -> G ~~> sup ( ran G , RR , < ) )

Proof

Step Hyp Ref Expression
1 isumsup.1
 |-  Z = ( ZZ>= ` M )
2 isumsup.2
 |-  G = seq M ( + , F )
3 isumsup.3
 |-  ( ph -> M e. ZZ )
4 isumsup.4
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
5 isumsup.5
 |-  ( ( ph /\ k e. Z ) -> A e. RR )
6 isumsup.6
 |-  ( ( ph /\ k e. Z ) -> 0 <_ A )
7 isumsup.7
 |-  ( ph -> E. x e. RR A. j e. Z ( G ` j ) <_ x )
8 4 5 eqeltrd
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR )
9 1 3 8 serfre
 |-  ( ph -> seq M ( + , F ) : Z --> RR )
10 2 feq1i
 |-  ( G : Z --> RR <-> seq M ( + , F ) : Z --> RR )
11 9 10 sylibr
 |-  ( ph -> G : Z --> RR )
12 simpr
 |-  ( ( ph /\ j e. Z ) -> j e. Z )
13 12 1 eleqtrdi
 |-  ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) )
14 eluzelz
 |-  ( j e. ( ZZ>= ` M ) -> j e. ZZ )
15 uzid
 |-  ( j e. ZZ -> j e. ( ZZ>= ` j ) )
16 peano2uz
 |-  ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) )
17 13 14 15 16 4syl
 |-  ( ( ph /\ j e. Z ) -> ( j + 1 ) e. ( ZZ>= ` j ) )
18 simpl
 |-  ( ( ph /\ j e. Z ) -> ph )
19 elfzuz
 |-  ( k e. ( M ... ( j + 1 ) ) -> k e. ( ZZ>= ` M ) )
20 19 1 eleqtrrdi
 |-  ( k e. ( M ... ( j + 1 ) ) -> k e. Z )
21 18 20 8 syl2an
 |-  ( ( ( ph /\ j e. Z ) /\ k e. ( M ... ( j + 1 ) ) ) -> ( F ` k ) e. RR )
22 1 peano2uzs
 |-  ( j e. Z -> ( j + 1 ) e. Z )
23 22 adantl
 |-  ( ( ph /\ j e. Z ) -> ( j + 1 ) e. Z )
24 elfzuz
 |-  ( k e. ( ( j + 1 ) ... ( j + 1 ) ) -> k e. ( ZZ>= ` ( j + 1 ) ) )
25 1 uztrn2
 |-  ( ( ( j + 1 ) e. Z /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. Z )
26 23 24 25 syl2an
 |-  ( ( ( ph /\ j e. Z ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> k e. Z )
27 6 4 breqtrrd
 |-  ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) )
28 27 adantlr
 |-  ( ( ( ph /\ j e. Z ) /\ k e. Z ) -> 0 <_ ( F ` k ) )
29 26 28 syldan
 |-  ( ( ( ph /\ j e. Z ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> 0 <_ ( F ` k ) )
30 13 17 21 29 sermono
 |-  ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) <_ ( seq M ( + , F ) ` ( j + 1 ) ) )
31 2 fveq1i
 |-  ( G ` j ) = ( seq M ( + , F ) ` j )
32 2 fveq1i
 |-  ( G ` ( j + 1 ) ) = ( seq M ( + , F ) ` ( j + 1 ) )
33 30 31 32 3brtr4g
 |-  ( ( ph /\ j e. Z ) -> ( G ` j ) <_ ( G ` ( j + 1 ) ) )
34 1 3 11 33 7 climsup
 |-  ( ph -> G ~~> sup ( ran G , RR , < ) )