Step |
Hyp |
Ref |
Expression |
1 |
|
isumsup.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumsup.2 |
|- G = seq M ( + , F ) |
3 |
|
isumsup.3 |
|- ( ph -> M e. ZZ ) |
4 |
|
isumsup.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
5 |
|
isumsup.5 |
|- ( ( ph /\ k e. Z ) -> A e. RR ) |
6 |
|
isumsup.6 |
|- ( ( ph /\ k e. Z ) -> 0 <_ A ) |
7 |
|
isumsup.7 |
|- ( ph -> E. x e. RR A. j e. Z ( G ` j ) <_ x ) |
8 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
9 |
1 3 8
|
serfre |
|- ( ph -> seq M ( + , F ) : Z --> RR ) |
10 |
2
|
feq1i |
|- ( G : Z --> RR <-> seq M ( + , F ) : Z --> RR ) |
11 |
9 10
|
sylibr |
|- ( ph -> G : Z --> RR ) |
12 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
13 |
12 1
|
eleqtrdi |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
14 |
|
eluzelz |
|- ( j e. ( ZZ>= ` M ) -> j e. ZZ ) |
15 |
|
uzid |
|- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
16 |
|
peano2uz |
|- ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
17 |
13 14 15 16
|
4syl |
|- ( ( ph /\ j e. Z ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
18 |
|
simpl |
|- ( ( ph /\ j e. Z ) -> ph ) |
19 |
|
elfzuz |
|- ( k e. ( M ... ( j + 1 ) ) -> k e. ( ZZ>= ` M ) ) |
20 |
19 1
|
eleqtrrdi |
|- ( k e. ( M ... ( j + 1 ) ) -> k e. Z ) |
21 |
18 20 8
|
syl2an |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... ( j + 1 ) ) ) -> ( F ` k ) e. RR ) |
22 |
1
|
peano2uzs |
|- ( j e. Z -> ( j + 1 ) e. Z ) |
23 |
22
|
adantl |
|- ( ( ph /\ j e. Z ) -> ( j + 1 ) e. Z ) |
24 |
|
elfzuz |
|- ( k e. ( ( j + 1 ) ... ( j + 1 ) ) -> k e. ( ZZ>= ` ( j + 1 ) ) ) |
25 |
1
|
uztrn2 |
|- ( ( ( j + 1 ) e. Z /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. Z ) |
26 |
23 24 25
|
syl2an |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> k e. Z ) |
27 |
6 4
|
breqtrrd |
|- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
28 |
27
|
adantlr |
|- ( ( ( ph /\ j e. Z ) /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
29 |
26 28
|
syldan |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> 0 <_ ( F ` k ) ) |
30 |
13 17 21 29
|
sermono |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) <_ ( seq M ( + , F ) ` ( j + 1 ) ) ) |
31 |
2
|
fveq1i |
|- ( G ` j ) = ( seq M ( + , F ) ` j ) |
32 |
2
|
fveq1i |
|- ( G ` ( j + 1 ) ) = ( seq M ( + , F ) ` ( j + 1 ) ) |
33 |
30 31 32
|
3brtr4g |
|- ( ( ph /\ j e. Z ) -> ( G ` j ) <_ ( G ` ( j + 1 ) ) ) |
34 |
1 3 11 33 7
|
climsup |
|- ( ph -> G ~~> sup ( ran G , RR , < ) ) |