Step |
Hyp |
Ref |
Expression |
1 |
|
unit.1 |
|- U = ( Unit ` R ) |
2 |
|
unit.2 |
|- .1. = ( 1r ` R ) |
3 |
|
unit.3 |
|- .|| = ( ||r ` R ) |
4 |
|
unit.4 |
|- S = ( oppR ` R ) |
5 |
|
unit.5 |
|- E = ( ||r ` S ) |
6 |
|
elfvdm |
|- ( X e. ( Unit ` R ) -> R e. dom Unit ) |
7 |
6 1
|
eleq2s |
|- ( X e. U -> R e. dom Unit ) |
8 |
7
|
elexd |
|- ( X e. U -> R e. _V ) |
9 |
|
df-br |
|- ( X .|| .1. <-> <. X , .1. >. e. .|| ) |
10 |
|
elfvdm |
|- ( <. X , .1. >. e. ( ||r ` R ) -> R e. dom ||r ) |
11 |
10 3
|
eleq2s |
|- ( <. X , .1. >. e. .|| -> R e. dom ||r ) |
12 |
11
|
elexd |
|- ( <. X , .1. >. e. .|| -> R e. _V ) |
13 |
9 12
|
sylbi |
|- ( X .|| .1. -> R e. _V ) |
14 |
13
|
adantr |
|- ( ( X .|| .1. /\ X E .1. ) -> R e. _V ) |
15 |
|
fveq2 |
|- ( r = R -> ( ||r ` r ) = ( ||r ` R ) ) |
16 |
15 3
|
eqtr4di |
|- ( r = R -> ( ||r ` r ) = .|| ) |
17 |
|
fveq2 |
|- ( r = R -> ( oppR ` r ) = ( oppR ` R ) ) |
18 |
17 4
|
eqtr4di |
|- ( r = R -> ( oppR ` r ) = S ) |
19 |
18
|
fveq2d |
|- ( r = R -> ( ||r ` ( oppR ` r ) ) = ( ||r ` S ) ) |
20 |
19 5
|
eqtr4di |
|- ( r = R -> ( ||r ` ( oppR ` r ) ) = E ) |
21 |
16 20
|
ineq12d |
|- ( r = R -> ( ( ||r ` r ) i^i ( ||r ` ( oppR ` r ) ) ) = ( .|| i^i E ) ) |
22 |
21
|
cnveqd |
|- ( r = R -> `' ( ( ||r ` r ) i^i ( ||r ` ( oppR ` r ) ) ) = `' ( .|| i^i E ) ) |
23 |
|
fveq2 |
|- ( r = R -> ( 1r ` r ) = ( 1r ` R ) ) |
24 |
23 2
|
eqtr4di |
|- ( r = R -> ( 1r ` r ) = .1. ) |
25 |
24
|
sneqd |
|- ( r = R -> { ( 1r ` r ) } = { .1. } ) |
26 |
22 25
|
imaeq12d |
|- ( r = R -> ( `' ( ( ||r ` r ) i^i ( ||r ` ( oppR ` r ) ) ) " { ( 1r ` r ) } ) = ( `' ( .|| i^i E ) " { .1. } ) ) |
27 |
|
df-unit |
|- Unit = ( r e. _V |-> ( `' ( ( ||r ` r ) i^i ( ||r ` ( oppR ` r ) ) ) " { ( 1r ` r ) } ) ) |
28 |
3
|
fvexi |
|- .|| e. _V |
29 |
28
|
inex1 |
|- ( .|| i^i E ) e. _V |
30 |
29
|
cnvex |
|- `' ( .|| i^i E ) e. _V |
31 |
30
|
imaex |
|- ( `' ( .|| i^i E ) " { .1. } ) e. _V |
32 |
26 27 31
|
fvmpt |
|- ( R e. _V -> ( Unit ` R ) = ( `' ( .|| i^i E ) " { .1. } ) ) |
33 |
1 32
|
eqtrid |
|- ( R e. _V -> U = ( `' ( .|| i^i E ) " { .1. } ) ) |
34 |
33
|
eleq2d |
|- ( R e. _V -> ( X e. U <-> X e. ( `' ( .|| i^i E ) " { .1. } ) ) ) |
35 |
|
inss1 |
|- ( .|| i^i E ) C_ .|| |
36 |
3
|
reldvdsr |
|- Rel .|| |
37 |
|
relss |
|- ( ( .|| i^i E ) C_ .|| -> ( Rel .|| -> Rel ( .|| i^i E ) ) ) |
38 |
35 36 37
|
mp2 |
|- Rel ( .|| i^i E ) |
39 |
|
eliniseg2 |
|- ( Rel ( .|| i^i E ) -> ( X e. ( `' ( .|| i^i E ) " { .1. } ) <-> X ( .|| i^i E ) .1. ) ) |
40 |
38 39
|
ax-mp |
|- ( X e. ( `' ( .|| i^i E ) " { .1. } ) <-> X ( .|| i^i E ) .1. ) |
41 |
|
brin |
|- ( X ( .|| i^i E ) .1. <-> ( X .|| .1. /\ X E .1. ) ) |
42 |
40 41
|
bitri |
|- ( X e. ( `' ( .|| i^i E ) " { .1. } ) <-> ( X .|| .1. /\ X E .1. ) ) |
43 |
34 42
|
bitrdi |
|- ( R e. _V -> ( X e. U <-> ( X .|| .1. /\ X E .1. ) ) ) |
44 |
8 14 43
|
pm5.21nii |
|- ( X e. U <-> ( X .|| .1. /\ X E .1. ) ) |