Step |
Hyp |
Ref |
Expression |
1 |
|
isuspgr.v |
|- V = ( Vtx ` G ) |
2 |
|
isuspgr.e |
|- E = ( iEdg ` G ) |
3 |
1 2
|
isusgr |
|- ( G e. U -> ( G e. USGraph <-> E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) ) |
4 |
|
prprrab |
|- { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } |
5 |
|
f1eq3 |
|- ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } -> ( E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } <-> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
6 |
4 5
|
mp1i |
|- ( G e. U -> ( E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } <-> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
7 |
3 6
|
bitrd |
|- ( G e. U -> ( G e. USGraph <-> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |