| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isuhgr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isuhgr.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 |  | df-ushgr |  |-  USHGraph = { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> ( ~P v \ { (/) } ) } | 
						
							| 4 | 3 | eleq2i |  |-  ( G e. USHGraph <-> G e. { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> ( ~P v \ { (/) } ) } ) | 
						
							| 5 |  | fveq2 |  |-  ( h = G -> ( iEdg ` h ) = ( iEdg ` G ) ) | 
						
							| 6 | 5 2 | eqtr4di |  |-  ( h = G -> ( iEdg ` h ) = E ) | 
						
							| 7 | 5 | dmeqd |  |-  ( h = G -> dom ( iEdg ` h ) = dom ( iEdg ` G ) ) | 
						
							| 8 | 2 | eqcomi |  |-  ( iEdg ` G ) = E | 
						
							| 9 | 8 | dmeqi |  |-  dom ( iEdg ` G ) = dom E | 
						
							| 10 | 7 9 | eqtrdi |  |-  ( h = G -> dom ( iEdg ` h ) = dom E ) | 
						
							| 11 |  | fveq2 |  |-  ( h = G -> ( Vtx ` h ) = ( Vtx ` G ) ) | 
						
							| 12 | 11 1 | eqtr4di |  |-  ( h = G -> ( Vtx ` h ) = V ) | 
						
							| 13 | 12 | pweqd |  |-  ( h = G -> ~P ( Vtx ` h ) = ~P V ) | 
						
							| 14 | 13 | difeq1d |  |-  ( h = G -> ( ~P ( Vtx ` h ) \ { (/) } ) = ( ~P V \ { (/) } ) ) | 
						
							| 15 | 6 10 14 | f1eq123d |  |-  ( h = G -> ( ( iEdg ` h ) : dom ( iEdg ` h ) -1-1-> ( ~P ( Vtx ` h ) \ { (/) } ) <-> E : dom E -1-1-> ( ~P V \ { (/) } ) ) ) | 
						
							| 16 |  | fvexd |  |-  ( g = h -> ( Vtx ` g ) e. _V ) | 
						
							| 17 |  | fveq2 |  |-  ( g = h -> ( Vtx ` g ) = ( Vtx ` h ) ) | 
						
							| 18 |  | fvexd |  |-  ( ( g = h /\ v = ( Vtx ` h ) ) -> ( iEdg ` g ) e. _V ) | 
						
							| 19 |  | fveq2 |  |-  ( g = h -> ( iEdg ` g ) = ( iEdg ` h ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( g = h /\ v = ( Vtx ` h ) ) -> ( iEdg ` g ) = ( iEdg ` h ) ) | 
						
							| 21 |  | simpr |  |-  ( ( ( g = h /\ v = ( Vtx ` h ) ) /\ e = ( iEdg ` h ) ) -> e = ( iEdg ` h ) ) | 
						
							| 22 | 21 | dmeqd |  |-  ( ( ( g = h /\ v = ( Vtx ` h ) ) /\ e = ( iEdg ` h ) ) -> dom e = dom ( iEdg ` h ) ) | 
						
							| 23 |  | simpr |  |-  ( ( g = h /\ v = ( Vtx ` h ) ) -> v = ( Vtx ` h ) ) | 
						
							| 24 | 23 | pweqd |  |-  ( ( g = h /\ v = ( Vtx ` h ) ) -> ~P v = ~P ( Vtx ` h ) ) | 
						
							| 25 | 24 | difeq1d |  |-  ( ( g = h /\ v = ( Vtx ` h ) ) -> ( ~P v \ { (/) } ) = ( ~P ( Vtx ` h ) \ { (/) } ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( g = h /\ v = ( Vtx ` h ) ) /\ e = ( iEdg ` h ) ) -> ( ~P v \ { (/) } ) = ( ~P ( Vtx ` h ) \ { (/) } ) ) | 
						
							| 27 | 21 22 26 | f1eq123d |  |-  ( ( ( g = h /\ v = ( Vtx ` h ) ) /\ e = ( iEdg ` h ) ) -> ( e : dom e -1-1-> ( ~P v \ { (/) } ) <-> ( iEdg ` h ) : dom ( iEdg ` h ) -1-1-> ( ~P ( Vtx ` h ) \ { (/) } ) ) ) | 
						
							| 28 | 18 20 27 | sbcied2 |  |-  ( ( g = h /\ v = ( Vtx ` h ) ) -> ( [. ( iEdg ` g ) / e ]. e : dom e -1-1-> ( ~P v \ { (/) } ) <-> ( iEdg ` h ) : dom ( iEdg ` h ) -1-1-> ( ~P ( Vtx ` h ) \ { (/) } ) ) ) | 
						
							| 29 | 16 17 28 | sbcied2 |  |-  ( g = h -> ( [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> ( ~P v \ { (/) } ) <-> ( iEdg ` h ) : dom ( iEdg ` h ) -1-1-> ( ~P ( Vtx ` h ) \ { (/) } ) ) ) | 
						
							| 30 | 29 | cbvabv |  |-  { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> ( ~P v \ { (/) } ) } = { h | ( iEdg ` h ) : dom ( iEdg ` h ) -1-1-> ( ~P ( Vtx ` h ) \ { (/) } ) } | 
						
							| 31 | 15 30 | elab2g |  |-  ( G e. U -> ( G e. { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> ( ~P v \ { (/) } ) } <-> E : dom E -1-1-> ( ~P V \ { (/) } ) ) ) | 
						
							| 32 | 4 31 | bitrid |  |-  ( G e. U -> ( G e. USHGraph <-> E : dom E -1-1-> ( ~P V \ { (/) } ) ) ) |