Step |
Hyp |
Ref |
Expression |
1 |
|
isusp.1 |
|- B = ( Base ` W ) |
2 |
|
isusp.2 |
|- U = ( UnifSt ` W ) |
3 |
|
isusp.3 |
|- J = ( TopOpen ` W ) |
4 |
|
elex |
|- ( W e. UnifSp -> W e. _V ) |
5 |
|
0nep0 |
|- (/) =/= { (/) } |
6 |
|
fvprc |
|- ( -. W e. _V -> ( Base ` W ) = (/) ) |
7 |
1 6
|
syl5eq |
|- ( -. W e. _V -> B = (/) ) |
8 |
7
|
fveq2d |
|- ( -. W e. _V -> ( UnifOn ` B ) = ( UnifOn ` (/) ) ) |
9 |
|
ust0 |
|- ( UnifOn ` (/) ) = { { (/) } } |
10 |
8 9
|
eqtrdi |
|- ( -. W e. _V -> ( UnifOn ` B ) = { { (/) } } ) |
11 |
10
|
eleq2d |
|- ( -. W e. _V -> ( U e. ( UnifOn ` B ) <-> U e. { { (/) } } ) ) |
12 |
2
|
fvexi |
|- U e. _V |
13 |
12
|
elsn |
|- ( U e. { { (/) } } <-> U = { (/) } ) |
14 |
11 13
|
bitrdi |
|- ( -. W e. _V -> ( U e. ( UnifOn ` B ) <-> U = { (/) } ) ) |
15 |
|
fvprc |
|- ( -. W e. _V -> ( UnifSt ` W ) = (/) ) |
16 |
2 15
|
syl5eq |
|- ( -. W e. _V -> U = (/) ) |
17 |
16
|
eqeq1d |
|- ( -. W e. _V -> ( U = { (/) } <-> (/) = { (/) } ) ) |
18 |
14 17
|
bitrd |
|- ( -. W e. _V -> ( U e. ( UnifOn ` B ) <-> (/) = { (/) } ) ) |
19 |
18
|
necon3bbid |
|- ( -. W e. _V -> ( -. U e. ( UnifOn ` B ) <-> (/) =/= { (/) } ) ) |
20 |
5 19
|
mpbiri |
|- ( -. W e. _V -> -. U e. ( UnifOn ` B ) ) |
21 |
20
|
con4i |
|- ( U e. ( UnifOn ` B ) -> W e. _V ) |
22 |
21
|
adantr |
|- ( ( U e. ( UnifOn ` B ) /\ J = ( unifTop ` U ) ) -> W e. _V ) |
23 |
|
fveq2 |
|- ( w = W -> ( UnifSt ` w ) = ( UnifSt ` W ) ) |
24 |
23 2
|
eqtr4di |
|- ( w = W -> ( UnifSt ` w ) = U ) |
25 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
26 |
25 1
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = B ) |
27 |
26
|
fveq2d |
|- ( w = W -> ( UnifOn ` ( Base ` w ) ) = ( UnifOn ` B ) ) |
28 |
24 27
|
eleq12d |
|- ( w = W -> ( ( UnifSt ` w ) e. ( UnifOn ` ( Base ` w ) ) <-> U e. ( UnifOn ` B ) ) ) |
29 |
|
fveq2 |
|- ( w = W -> ( TopOpen ` w ) = ( TopOpen ` W ) ) |
30 |
29 3
|
eqtr4di |
|- ( w = W -> ( TopOpen ` w ) = J ) |
31 |
24
|
fveq2d |
|- ( w = W -> ( unifTop ` ( UnifSt ` w ) ) = ( unifTop ` U ) ) |
32 |
30 31
|
eqeq12d |
|- ( w = W -> ( ( TopOpen ` w ) = ( unifTop ` ( UnifSt ` w ) ) <-> J = ( unifTop ` U ) ) ) |
33 |
28 32
|
anbi12d |
|- ( w = W -> ( ( ( UnifSt ` w ) e. ( UnifOn ` ( Base ` w ) ) /\ ( TopOpen ` w ) = ( unifTop ` ( UnifSt ` w ) ) ) <-> ( U e. ( UnifOn ` B ) /\ J = ( unifTop ` U ) ) ) ) |
34 |
|
df-usp |
|- UnifSp = { w | ( ( UnifSt ` w ) e. ( UnifOn ` ( Base ` w ) ) /\ ( TopOpen ` w ) = ( unifTop ` ( UnifSt ` w ) ) ) } |
35 |
33 34
|
elab2g |
|- ( W e. _V -> ( W e. UnifSp <-> ( U e. ( UnifOn ` B ) /\ J = ( unifTop ` U ) ) ) ) |
36 |
4 22 35
|
pm5.21nii |
|- ( W e. UnifSp <-> ( U e. ( UnifOn ` B ) /\ J = ( unifTop ` U ) ) ) |