| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opex |  |-  <. V , E >. e. _V | 
						
							| 2 |  | eqid |  |-  ( Vtx ` <. V , E >. ) = ( Vtx ` <. V , E >. ) | 
						
							| 3 |  | eqid |  |-  ( iEdg ` <. V , E >. ) = ( iEdg ` <. V , E >. ) | 
						
							| 4 | 2 3 | isuspgr |  |-  ( <. V , E >. e. _V -> ( <. V , E >. e. USPGraph <-> ( iEdg ` <. V , E >. ) : dom ( iEdg ` <. V , E >. ) -1-1-> { p e. ( ~P ( Vtx ` <. V , E >. ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) | 
						
							| 5 | 1 4 | mp1i |  |-  ( ( V e. W /\ E e. X ) -> ( <. V , E >. e. USPGraph <-> ( iEdg ` <. V , E >. ) : dom ( iEdg ` <. V , E >. ) -1-1-> { p e. ( ~P ( Vtx ` <. V , E >. ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) | 
						
							| 6 |  | opiedgfv |  |-  ( ( V e. W /\ E e. X ) -> ( iEdg ` <. V , E >. ) = E ) | 
						
							| 7 | 6 | dmeqd |  |-  ( ( V e. W /\ E e. X ) -> dom ( iEdg ` <. V , E >. ) = dom E ) | 
						
							| 8 |  | opvtxfv |  |-  ( ( V e. W /\ E e. X ) -> ( Vtx ` <. V , E >. ) = V ) | 
						
							| 9 | 8 | pweqd |  |-  ( ( V e. W /\ E e. X ) -> ~P ( Vtx ` <. V , E >. ) = ~P V ) | 
						
							| 10 | 9 | difeq1d |  |-  ( ( V e. W /\ E e. X ) -> ( ~P ( Vtx ` <. V , E >. ) \ { (/) } ) = ( ~P V \ { (/) } ) ) | 
						
							| 11 | 10 | rabeqdv |  |-  ( ( V e. W /\ E e. X ) -> { p e. ( ~P ( Vtx ` <. V , E >. ) \ { (/) } ) | ( # ` p ) <_ 2 } = { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) | 
						
							| 12 | 6 7 11 | f1eq123d |  |-  ( ( V e. W /\ E e. X ) -> ( ( iEdg ` <. V , E >. ) : dom ( iEdg ` <. V , E >. ) -1-1-> { p e. ( ~P ( Vtx ` <. V , E >. ) \ { (/) } ) | ( # ` p ) <_ 2 } <-> E : dom E -1-1-> { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) | 
						
							| 13 | 5 12 | bitrd |  |-  ( ( V e. W /\ E e. X ) -> ( <. V , E >. e. USPGraph <-> E : dom E -1-1-> { p e. ( ~P V \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |