Metamath Proof Explorer


Theorem iswatN

Description: The predicate "is a W atom" (corresponding to fiducial atom D ). (Contributed by NM, 26-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses watomfval.a
|- A = ( Atoms ` K )
watomfval.p
|- P = ( _|_P ` K )
watomfval.w
|- W = ( WAtoms ` K )
Assertion iswatN
|- ( ( K e. B /\ D e. A ) -> ( P e. ( W ` D ) <-> ( P e. A /\ -. P e. ( ( _|_P ` K ) ` { D } ) ) ) )

Proof

Step Hyp Ref Expression
1 watomfval.a
 |-  A = ( Atoms ` K )
2 watomfval.p
 |-  P = ( _|_P ` K )
3 watomfval.w
 |-  W = ( WAtoms ` K )
4 1 2 3 watvalN
 |-  ( ( K e. B /\ D e. A ) -> ( W ` D ) = ( A \ ( ( _|_P ` K ) ` { D } ) ) )
5 4 eleq2d
 |-  ( ( K e. B /\ D e. A ) -> ( P e. ( W ` D ) <-> P e. ( A \ ( ( _|_P ` K ) ` { D } ) ) ) )
6 eldif
 |-  ( P e. ( A \ ( ( _|_P ` K ) ` { D } ) ) <-> ( P e. A /\ -. P e. ( ( _|_P ` K ) ` { D } ) ) )
7 5 6 bitrdi
 |-  ( ( K e. B /\ D e. A ) -> ( P e. ( W ` D ) <-> ( P e. A /\ -. P e. ( ( _|_P ` K ) ` { D } ) ) ) )