Description: The predicate "is a W atom" (corresponding to fiducial atom D ). (Contributed by NM, 26-Jan-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | watomfval.a | |- A = ( Atoms ` K ) |
|
watomfval.p | |- P = ( _|_P ` K ) |
||
watomfval.w | |- W = ( WAtoms ` K ) |
||
Assertion | iswatN | |- ( ( K e. B /\ D e. A ) -> ( P e. ( W ` D ) <-> ( P e. A /\ -. P e. ( ( _|_P ` K ) ` { D } ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | watomfval.a | |- A = ( Atoms ` K ) |
|
2 | watomfval.p | |- P = ( _|_P ` K ) |
|
3 | watomfval.w | |- W = ( WAtoms ` K ) |
|
4 | 1 2 3 | watvalN | |- ( ( K e. B /\ D e. A ) -> ( W ` D ) = ( A \ ( ( _|_P ` K ) ` { D } ) ) ) |
5 | 4 | eleq2d | |- ( ( K e. B /\ D e. A ) -> ( P e. ( W ` D ) <-> P e. ( A \ ( ( _|_P ` K ) ` { D } ) ) ) ) |
6 | eldif | |- ( P e. ( A \ ( ( _|_P ` K ) ` { D } ) ) <-> ( P e. A /\ -. P e. ( ( _|_P ` K ) ` { D } ) ) ) |
|
7 | 5 6 | bitrdi | |- ( ( K e. B /\ D e. A ) -> ( P e. ( W ` D ) <-> ( P e. A /\ -. P e. ( ( _|_P ` K ) ` { D } ) ) ) ) |