Step |
Hyp |
Ref |
Expression |
1 |
|
df-word |
|- Word S = { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } |
2 |
1
|
eleq2i |
|- ( W e. Word S <-> W e. { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } ) |
3 |
|
ovex |
|- ( 0 ..^ l ) e. _V |
4 |
|
fex |
|- ( ( W : ( 0 ..^ l ) --> S /\ ( 0 ..^ l ) e. _V ) -> W e. _V ) |
5 |
3 4
|
mpan2 |
|- ( W : ( 0 ..^ l ) --> S -> W e. _V ) |
6 |
5
|
rexlimivw |
|- ( E. l e. NN0 W : ( 0 ..^ l ) --> S -> W e. _V ) |
7 |
|
feq1 |
|- ( w = W -> ( w : ( 0 ..^ l ) --> S <-> W : ( 0 ..^ l ) --> S ) ) |
8 |
7
|
rexbidv |
|- ( w = W -> ( E. l e. NN0 w : ( 0 ..^ l ) --> S <-> E. l e. NN0 W : ( 0 ..^ l ) --> S ) ) |
9 |
6 8
|
elab3 |
|- ( W e. { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } <-> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
10 |
2 9
|
bitri |
|- ( W e. Word S <-> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |