| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( l = L -> ( 0 ..^ l ) = ( 0 ..^ L ) ) |
| 2 |
1
|
feq2d |
|- ( l = L -> ( W : ( 0 ..^ l ) --> S <-> W : ( 0 ..^ L ) --> S ) ) |
| 3 |
2
|
rspcev |
|- ( ( L e. NN0 /\ W : ( 0 ..^ L ) --> S ) -> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
| 4 |
|
0nn0 |
|- 0 e. NN0 |
| 5 |
|
fzo0n0 |
|- ( ( 0 ..^ L ) =/= (/) <-> L e. NN ) |
| 6 |
|
nnnn0 |
|- ( L e. NN -> L e. NN0 ) |
| 7 |
5 6
|
sylbi |
|- ( ( 0 ..^ L ) =/= (/) -> L e. NN0 ) |
| 8 |
7
|
necon1bi |
|- ( -. L e. NN0 -> ( 0 ..^ L ) = (/) ) |
| 9 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
| 10 |
8 9
|
eqtr4di |
|- ( -. L e. NN0 -> ( 0 ..^ L ) = ( 0 ..^ 0 ) ) |
| 11 |
10
|
feq2d |
|- ( -. L e. NN0 -> ( W : ( 0 ..^ L ) --> S <-> W : ( 0 ..^ 0 ) --> S ) ) |
| 12 |
11
|
biimpa |
|- ( ( -. L e. NN0 /\ W : ( 0 ..^ L ) --> S ) -> W : ( 0 ..^ 0 ) --> S ) |
| 13 |
|
oveq2 |
|- ( l = 0 -> ( 0 ..^ l ) = ( 0 ..^ 0 ) ) |
| 14 |
13
|
feq2d |
|- ( l = 0 -> ( W : ( 0 ..^ l ) --> S <-> W : ( 0 ..^ 0 ) --> S ) ) |
| 15 |
14
|
rspcev |
|- ( ( 0 e. NN0 /\ W : ( 0 ..^ 0 ) --> S ) -> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
| 16 |
4 12 15
|
sylancr |
|- ( ( -. L e. NN0 /\ W : ( 0 ..^ L ) --> S ) -> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
| 17 |
3 16
|
pm2.61ian |
|- ( W : ( 0 ..^ L ) --> S -> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
| 18 |
|
iswrd |
|- ( W e. Word S <-> E. l e. NN0 W : ( 0 ..^ l ) --> S ) |
| 19 |
17 18
|
sylibr |
|- ( W : ( 0 ..^ L ) --> S -> W e. Word S ) |