Metamath Proof Explorer


Theorem iswspthn

Description: An element of the set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)

Ref Expression
Assertion iswspthn
|- ( W e. ( N WSPathsN G ) <-> ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) )

Proof

Step Hyp Ref Expression
1 breq2
 |-  ( w = W -> ( f ( SPaths ` G ) w <-> f ( SPaths ` G ) W ) )
2 1 exbidv
 |-  ( w = W -> ( E. f f ( SPaths ` G ) w <-> E. f f ( SPaths ` G ) W ) )
3 wspthsn
 |-  ( N WSPathsN G ) = { w e. ( N WWalksN G ) | E. f f ( SPaths ` G ) w }
4 2 3 elrab2
 |-  ( W e. ( N WSPathsN G ) <-> ( W e. ( N WWalksN G ) /\ E. f f ( SPaths ` G ) W ) )