Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksn |
|- ( N e. NN0 -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) |
2 |
1
|
eleq2d |
|- ( N e. NN0 -> ( W e. ( N WWalksN G ) <-> W e. { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) ) |
3 |
|
fveqeq2 |
|- ( w = W -> ( ( # ` w ) = ( N + 1 ) <-> ( # ` W ) = ( N + 1 ) ) ) |
4 |
3
|
elrab |
|- ( W e. { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } <-> ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |
5 |
2 4
|
bitrdi |
|- ( N e. NN0 -> ( W e. ( N WWalksN G ) <-> ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) |