| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( C e. Cat -> C e. Cat ) | 
						
							| 2 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 3 |  | eqid |  |-  ( Hom ` C ) = ( Hom ` C ) | 
						
							| 4 | 1 2 3 | zerooval |  |-  ( C e. Cat -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) | 
						
							| 5 | 4 | eleq2d |  |-  ( C e. Cat -> ( O e. ( ZeroO ` C ) <-> O e. ( ( InitO ` C ) i^i ( TermO ` C ) ) ) ) | 
						
							| 6 |  | elin |  |-  ( O e. ( ( InitO ` C ) i^i ( TermO ` C ) ) <-> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) | 
						
							| 7 |  | initoo |  |-  ( C e. Cat -> ( O e. ( InitO ` C ) -> O e. ( Base ` C ) ) ) | 
						
							| 8 | 7 | adantrd |  |-  ( C e. Cat -> ( ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) -> O e. ( Base ` C ) ) ) | 
						
							| 9 | 6 8 | biimtrid |  |-  ( C e. Cat -> ( O e. ( ( InitO ` C ) i^i ( TermO ` C ) ) -> O e. ( Base ` C ) ) ) | 
						
							| 10 | 5 9 | sylbid |  |-  ( C e. Cat -> ( O e. ( ZeroO ` C ) -> O e. ( Base ` C ) ) ) | 
						
							| 11 | 10 | imp |  |-  ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> O e. ( Base ` C ) ) | 
						
							| 12 |  | simpl |  |-  ( ( C e. Cat /\ O e. ( Base ` C ) ) -> C e. Cat ) | 
						
							| 13 |  | simpr |  |-  ( ( C e. Cat /\ O e. ( Base ` C ) ) -> O e. ( Base ` C ) ) | 
						
							| 14 | 2 3 12 13 | iszeroo |  |-  ( ( C e. Cat /\ O e. ( Base ` C ) ) -> ( O e. ( ZeroO ` C ) <-> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) | 
						
							| 15 | 14 | biimpd |  |-  ( ( C e. Cat /\ O e. ( Base ` C ) ) -> ( O e. ( ZeroO ` C ) -> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) | 
						
							| 16 | 15 | impancom |  |-  ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> ( O e. ( Base ` C ) -> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) | 
						
							| 17 | 11 16 | jcai |  |-  ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> ( O e. ( Base ` C ) /\ ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) |