Description: The predicate "is a zero object" of a category. (Contributed by AV, 3-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinito.b | |- B = ( Base ` C ) | |
| isinito.h | |- H = ( Hom ` C ) | ||
| isinito.c | |- ( ph -> C e. Cat ) | ||
| isinito.i | |- ( ph -> I e. B ) | ||
| Assertion | iszeroo | |- ( ph -> ( I e. ( ZeroO ` C ) <-> ( I e. ( InitO ` C ) /\ I e. ( TermO ` C ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isinito.b | |- B = ( Base ` C ) | |
| 2 | isinito.h | |- H = ( Hom ` C ) | |
| 3 | isinito.c | |- ( ph -> C e. Cat ) | |
| 4 | isinito.i | |- ( ph -> I e. B ) | |
| 5 | 3 1 2 | zerooval | |- ( ph -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) | 
| 6 | 5 | eleq2d | |- ( ph -> ( I e. ( ZeroO ` C ) <-> I e. ( ( InitO ` C ) i^i ( TermO ` C ) ) ) ) | 
| 7 | elin | |- ( I e. ( ( InitO ` C ) i^i ( TermO ` C ) ) <-> ( I e. ( InitO ` C ) /\ I e. ( TermO ` C ) ) ) | |
| 8 | 6 7 | bitrdi | |- ( ph -> ( I e. ( ZeroO ` C ) <-> ( I e. ( InitO ` C ) /\ I e. ( TermO ` C ) ) ) ) |