Metamath Proof Explorer


Theorem it0e0

Description: i times 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion it0e0
|- ( _i x. 0 ) = 0

Proof

Step Hyp Ref Expression
1 ax-icn
 |-  _i e. CC
2 1 mul01i
 |-  ( _i x. 0 ) = 0