Metamath Proof Explorer


Theorem it1ei

Description: _i times 1 equals _i . (Contributed by SN, 25-Apr-2025)

Ref Expression
Assertion it1ei
|- ( _i x. 1 ) = _i

Proof

Step Hyp Ref Expression
1 ax-icn
 |-  _i e. CC
2 1 mulridi
 |-  ( _i x. 1 ) = _i