| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-itco |  |-  IterComp = ( f e. _V |-> seq 0 ( ( g e. _V , j e. _V |-> ( f o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom f ) , f ) ) ) ) | 
						
							| 2 |  | eqidd |  |-  ( f = F -> 0 = 0 ) | 
						
							| 3 |  | coeq1 |  |-  ( f = F -> ( f o. g ) = ( F o. g ) ) | 
						
							| 4 | 3 | mpoeq3dv |  |-  ( f = F -> ( g e. _V , j e. _V |-> ( f o. g ) ) = ( g e. _V , j e. _V |-> ( F o. g ) ) ) | 
						
							| 5 |  | dmeq |  |-  ( f = F -> dom f = dom F ) | 
						
							| 6 | 5 | reseq2d |  |-  ( f = F -> ( _I |` dom f ) = ( _I |` dom F ) ) | 
						
							| 7 |  | id |  |-  ( f = F -> f = F ) | 
						
							| 8 | 6 7 | ifeq12d |  |-  ( f = F -> if ( i = 0 , ( _I |` dom f ) , f ) = if ( i = 0 , ( _I |` dom F ) , F ) ) | 
						
							| 9 | 8 | mpteq2dv |  |-  ( f = F -> ( i e. NN0 |-> if ( i = 0 , ( _I |` dom f ) , f ) ) = ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) | 
						
							| 10 | 2 4 9 | seqeq123d |  |-  ( f = F -> seq 0 ( ( g e. _V , j e. _V |-> ( f o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom f ) , f ) ) ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) | 
						
							| 11 |  | elex |  |-  ( F e. V -> F e. _V ) | 
						
							| 12 |  | seqex |  |-  seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) e. _V | 
						
							| 13 | 12 | a1i |  |-  ( F e. V -> seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) e. _V ) | 
						
							| 14 | 1 10 11 13 | fvmptd3 |  |-  ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) |