Step |
Hyp |
Ref |
Expression |
1 |
|
itcoval |
|- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) |
2 |
1
|
fveq1d |
|- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) ) |
3 |
|
0z |
|- 0 e. ZZ |
4 |
|
eqidd |
|- ( F e. V -> ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) = ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) |
5 |
|
iftrue |
|- ( i = 0 -> if ( i = 0 , ( _I |` dom F ) , F ) = ( _I |` dom F ) ) |
6 |
5
|
adantl |
|- ( ( F e. V /\ i = 0 ) -> if ( i = 0 , ( _I |` dom F ) , F ) = ( _I |` dom F ) ) |
7 |
|
0nn0 |
|- 0 e. NN0 |
8 |
7
|
a1i |
|- ( F e. V -> 0 e. NN0 ) |
9 |
|
dmexg |
|- ( F e. V -> dom F e. _V ) |
10 |
9
|
resiexd |
|- ( F e. V -> ( _I |` dom F ) e. _V ) |
11 |
4 6 8 10
|
fvmptd |
|- ( F e. V -> ( ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ` 0 ) = ( _I |` dom F ) ) |
12 |
3 11
|
seq1i |
|- ( F e. V -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) = ( _I |` dom F ) ) |
13 |
2 12
|
eqtrd |
|- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) |