| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							itcovalpc.f | 
							 |-  F = ( n e. NN0 |-> ( n + C ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = 0 -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` 0 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = 0 -> ( C x. x ) = ( C x. 0 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							oveq2d | 
							 |-  ( x = 0 -> ( n + ( C x. x ) ) = ( n + ( C x. 0 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							mpteq2dv | 
							 |-  ( x = 0 -> ( n e. NN0 |-> ( n + ( C x. x ) ) ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							eqeq12d | 
							 |-  ( x = 0 -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( n + ( C x. x ) ) ) <-> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = y -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` y ) )  | 
						
						
							| 8 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = y -> ( C x. x ) = ( C x. y ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq2d | 
							 |-  ( x = y -> ( n + ( C x. x ) ) = ( n + ( C x. y ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							mpteq2dv | 
							 |-  ( x = y -> ( n e. NN0 |-> ( n + ( C x. x ) ) ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							eqeq12d | 
							 |-  ( x = y -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( n + ( C x. x ) ) ) <-> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = ( y + 1 ) -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` ( y + 1 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = ( y + 1 ) -> ( C x. x ) = ( C x. ( y + 1 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq2d | 
							 |-  ( x = ( y + 1 ) -> ( n + ( C x. x ) ) = ( n + ( C x. ( y + 1 ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							mpteq2dv | 
							 |-  ( x = ( y + 1 ) -> ( n e. NN0 |-> ( n + ( C x. x ) ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							eqeq12d | 
							 |-  ( x = ( y + 1 ) -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( n + ( C x. x ) ) ) <-> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = I -> ( ( IterComp ` F ) ` x ) = ( ( IterComp ` F ) ` I ) )  | 
						
						
							| 18 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = I -> ( C x. x ) = ( C x. I ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq2d | 
							 |-  ( x = I -> ( n + ( C x. x ) ) = ( n + ( C x. I ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							mpteq2dv | 
							 |-  ( x = I -> ( n e. NN0 |-> ( n + ( C x. x ) ) ) = ( n e. NN0 |-> ( n + ( C x. I ) ) ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							eqeq12d | 
							 |-  ( x = I -> ( ( ( IterComp ` F ) ` x ) = ( n e. NN0 |-> ( n + ( C x. x ) ) ) <-> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( n + ( C x. I ) ) ) ) )  | 
						
						
							| 22 | 
							
								1
							 | 
							itcovalpclem1 | 
							 |-  ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) )  | 
						
						
							| 23 | 
							
								1
							 | 
							itcovalpclem2 | 
							 |-  ( ( y e. NN0 /\ C e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ancoms | 
							 |-  ( ( C e. NN0 /\ y e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							imp | 
							 |-  ( ( ( C e. NN0 /\ y e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) )  | 
						
						
							| 26 | 
							
								6 11 16 21 22 25
							 | 
							nn0indd | 
							 |-  ( ( C e. NN0 /\ I e. NN0 ) -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( n + ( C x. I ) ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							ancoms | 
							 |-  ( ( I e. NN0 /\ C e. NN0 ) -> ( ( IterComp ` F ) ` I ) = ( n e. NN0 |-> ( n + ( C x. I ) ) ) )  |