Step |
Hyp |
Ref |
Expression |
1 |
|
itcovalpc.f |
|- F = ( n e. NN0 |-> ( n + C ) ) |
2 |
|
nn0ex |
|- NN0 e. _V |
3 |
|
ovexd |
|- ( n e. NN0 -> ( n + C ) e. _V ) |
4 |
3
|
rgen |
|- A. n e. NN0 ( n + C ) e. _V |
5 |
1
|
itcoval0mpt |
|- ( ( NN0 e. _V /\ A. n e. NN0 ( n + C ) e. _V ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) |
6 |
2 4 5
|
mp2an |
|- ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) |
7 |
|
nn0cn |
|- ( C e. NN0 -> C e. CC ) |
8 |
7
|
mul01d |
|- ( C e. NN0 -> ( C x. 0 ) = 0 ) |
9 |
8
|
adantr |
|- ( ( C e. NN0 /\ n e. NN0 ) -> ( C x. 0 ) = 0 ) |
10 |
9
|
oveq2d |
|- ( ( C e. NN0 /\ n e. NN0 ) -> ( n + ( C x. 0 ) ) = ( n + 0 ) ) |
11 |
|
nn0cn |
|- ( n e. NN0 -> n e. CC ) |
12 |
11
|
addid1d |
|- ( n e. NN0 -> ( n + 0 ) = n ) |
13 |
12
|
adantl |
|- ( ( C e. NN0 /\ n e. NN0 ) -> ( n + 0 ) = n ) |
14 |
10 13
|
eqtr2d |
|- ( ( C e. NN0 /\ n e. NN0 ) -> n = ( n + ( C x. 0 ) ) ) |
15 |
14
|
mpteq2dva |
|- ( C e. NN0 -> ( n e. NN0 |-> n ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) |
16 |
6 15
|
syl5eq |
|- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) |