Step |
Hyp |
Ref |
Expression |
1 |
|
itcovalt2.f |
|- F = ( n e. NN0 |-> ( ( 2 x. n ) + C ) ) |
2 |
|
nn0ex |
|- NN0 e. _V |
3 |
|
ovexd |
|- ( n e. NN0 -> ( ( 2 x. n ) + C ) e. _V ) |
4 |
3
|
rgen |
|- A. n e. NN0 ( ( 2 x. n ) + C ) e. _V |
5 |
2 4
|
pm3.2i |
|- ( NN0 e. _V /\ A. n e. NN0 ( ( 2 x. n ) + C ) e. _V ) |
6 |
1
|
itcoval0mpt |
|- ( ( NN0 e. _V /\ A. n e. NN0 ( ( 2 x. n ) + C ) e. _V ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) |
7 |
5 6
|
mp1i |
|- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) |
8 |
|
simpr |
|- ( ( C e. NN0 /\ n e. NN0 ) -> n e. NN0 ) |
9 |
8
|
nn0cnd |
|- ( ( C e. NN0 /\ n e. NN0 ) -> n e. CC ) |
10 |
|
simpl |
|- ( ( C e. NN0 /\ n e. NN0 ) -> C e. NN0 ) |
11 |
10
|
nn0cnd |
|- ( ( C e. NN0 /\ n e. NN0 ) -> C e. CC ) |
12 |
|
2nn0 |
|- 2 e. NN0 |
13 |
12
|
numexp0 |
|- ( 2 ^ 0 ) = 1 |
14 |
13
|
a1i |
|- ( ( C e. NN0 /\ n e. NN0 ) -> ( 2 ^ 0 ) = 1 ) |
15 |
14
|
oveq2d |
|- ( ( C e. NN0 /\ n e. NN0 ) -> ( ( n + C ) x. ( 2 ^ 0 ) ) = ( ( n + C ) x. 1 ) ) |
16 |
8 10
|
nn0addcld |
|- ( ( C e. NN0 /\ n e. NN0 ) -> ( n + C ) e. NN0 ) |
17 |
16
|
nn0cnd |
|- ( ( C e. NN0 /\ n e. NN0 ) -> ( n + C ) e. CC ) |
18 |
17
|
mulid1d |
|- ( ( C e. NN0 /\ n e. NN0 ) -> ( ( n + C ) x. 1 ) = ( n + C ) ) |
19 |
15 18
|
eqtrd |
|- ( ( C e. NN0 /\ n e. NN0 ) -> ( ( n + C ) x. ( 2 ^ 0 ) ) = ( n + C ) ) |
20 |
9 11 19
|
mvrraddd |
|- ( ( C e. NN0 /\ n e. NN0 ) -> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) = n ) |
21 |
20
|
eqcomd |
|- ( ( C e. NN0 /\ n e. NN0 ) -> n = ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) |
22 |
21
|
mpteq2dva |
|- ( C e. NN0 -> ( n e. NN0 |-> n ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) |
23 |
7 22
|
eqtrd |
|- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) |