| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Re ` ( A / ( _i ^ k ) ) ) = ( Re ` ( A / ( _i ^ k ) ) ) | 
						
							| 2 | 1 | dfitg |  |-  S. (/) A _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) | 
						
							| 3 |  | ifan |  |-  if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) = if ( x e. (/) , if ( 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) , 0 ) | 
						
							| 4 |  | noel |  |-  -. x e. (/) | 
						
							| 5 | 4 | iffalsei |  |-  if ( x e. (/) , if ( 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) , 0 ) = 0 | 
						
							| 6 | 3 5 | eqtri |  |-  if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) = 0 | 
						
							| 7 | 6 | mpteq2i |  |-  ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> 0 ) | 
						
							| 8 |  | fconstmpt |  |-  ( RR X. { 0 } ) = ( x e. RR |-> 0 ) | 
						
							| 9 | 7 8 | eqtr4i |  |-  ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) = ( RR X. { 0 } ) | 
						
							| 10 | 9 | fveq2i |  |-  ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( RR X. { 0 } ) ) | 
						
							| 11 |  | itg20 |  |-  ( S.2 ` ( RR X. { 0 } ) ) = 0 | 
						
							| 12 | 10 11 | eqtri |  |-  ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) = 0 | 
						
							| 13 | 12 | oveq2i |  |-  ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( _i ^ k ) x. 0 ) | 
						
							| 14 |  | ax-icn |  |-  _i e. CC | 
						
							| 15 |  | elfznn0 |  |-  ( k e. ( 0 ... 3 ) -> k e. NN0 ) | 
						
							| 16 |  | expcl |  |-  ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) | 
						
							| 17 | 14 15 16 | sylancr |  |-  ( k e. ( 0 ... 3 ) -> ( _i ^ k ) e. CC ) | 
						
							| 18 | 17 | mul01d |  |-  ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. 0 ) = 0 ) | 
						
							| 19 | 13 18 | eqtrid |  |-  ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = 0 ) | 
						
							| 20 | 19 | sumeq2i |  |-  sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = sum_ k e. ( 0 ... 3 ) 0 | 
						
							| 21 |  | fzfi |  |-  ( 0 ... 3 ) e. Fin | 
						
							| 22 | 21 | olci |  |-  ( ( 0 ... 3 ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... 3 ) e. Fin ) | 
						
							| 23 |  | sumz |  |-  ( ( ( 0 ... 3 ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... 3 ) e. Fin ) -> sum_ k e. ( 0 ... 3 ) 0 = 0 ) | 
						
							| 24 | 22 23 | ax-mp |  |-  sum_ k e. ( 0 ... 3 ) 0 = 0 | 
						
							| 25 | 20 24 | eqtri |  |-  sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. (/) /\ 0 <_ ( Re ` ( A / ( _i ^ k ) ) ) ) , ( Re ` ( A / ( _i ^ k ) ) ) , 0 ) ) ) ) = 0 | 
						
							| 26 | 2 25 | eqtri |  |-  S. (/) A _d x = 0 |