Step |
Hyp |
Ref |
Expression |
1 |
|
i1f0 |
|- ( RR X. { 0 } ) e. dom S.1 |
2 |
|
itg1val |
|- ( ( RR X. { 0 } ) e. dom S.1 -> ( S.1 ` ( RR X. { 0 } ) ) = sum_ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ( x x. ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) ) ) |
3 |
1 2
|
ax-mp |
|- ( S.1 ` ( RR X. { 0 } ) ) = sum_ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ( x x. ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) ) |
4 |
|
rnxpss |
|- ran ( RR X. { 0 } ) C_ { 0 } |
5 |
|
ssdif0 |
|- ( ran ( RR X. { 0 } ) C_ { 0 } <-> ( ran ( RR X. { 0 } ) \ { 0 } ) = (/) ) |
6 |
4 5
|
mpbi |
|- ( ran ( RR X. { 0 } ) \ { 0 } ) = (/) |
7 |
6
|
sumeq1i |
|- sum_ x e. ( ran ( RR X. { 0 } ) \ { 0 } ) ( x x. ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) ) = sum_ x e. (/) ( x x. ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) ) |
8 |
|
sum0 |
|- sum_ x e. (/) ( x x. ( vol ` ( `' ( RR X. { 0 } ) " { x } ) ) ) = 0 |
9 |
3 7 8
|
3eqtri |
|- ( S.1 ` ( RR X. { 0 } ) ) = 0 |