Step |
Hyp |
Ref |
Expression |
1 |
|
itg10a.1 |
|- ( ph -> F e. dom S.1 ) |
2 |
|
itg10a.2 |
|- ( ph -> A C_ RR ) |
3 |
|
itg10a.3 |
|- ( ph -> ( vol* ` A ) = 0 ) |
4 |
|
itg10a.4 |
|- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) = 0 ) |
5 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
6 |
1 5
|
syl |
|- ( ph -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
7 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
8 |
1 7
|
syl |
|- ( ph -> F : RR --> RR ) |
9 |
8
|
ffnd |
|- ( ph -> F Fn RR ) |
10 |
9
|
adantr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> F Fn RR ) |
11 |
|
fniniseg |
|- ( F Fn RR -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
12 |
10 11
|
syl |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
13 |
|
eldifsni |
|- ( k e. ( ran F \ { 0 } ) -> k =/= 0 ) |
14 |
13
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> k =/= 0 ) |
15 |
|
simprl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> x e. RR ) |
16 |
|
eldif |
|- ( x e. ( RR \ A ) <-> ( x e. RR /\ -. x e. A ) ) |
17 |
|
simplrr |
|- ( ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) = k ) |
18 |
4
|
ad4ant14 |
|- ( ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) = 0 ) |
19 |
17 18
|
eqtr3d |
|- ( ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) /\ x e. ( RR \ A ) ) -> k = 0 ) |
20 |
19
|
ex |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( x e. ( RR \ A ) -> k = 0 ) ) |
21 |
16 20
|
syl5bir |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( ( x e. RR /\ -. x e. A ) -> k = 0 ) ) |
22 |
15 21
|
mpand |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( -. x e. A -> k = 0 ) ) |
23 |
22
|
necon1ad |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( k =/= 0 -> x e. A ) ) |
24 |
14 23
|
mpd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> x e. A ) |
25 |
24
|
ex |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. RR /\ ( F ` x ) = k ) -> x e. A ) ) |
26 |
12 25
|
sylbid |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' F " { k } ) -> x e. A ) ) |
27 |
26
|
ssrdv |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) C_ A ) |
28 |
2
|
adantr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A C_ RR ) |
29 |
27 28
|
sstrd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) C_ RR ) |
30 |
3
|
adantr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol* ` A ) = 0 ) |
31 |
|
ovolssnul |
|- ( ( ( `' F " { k } ) C_ A /\ A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) |
32 |
27 28 30 31
|
syl3anc |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) |
33 |
|
nulmbl |
|- ( ( ( `' F " { k } ) C_ RR /\ ( vol* ` ( `' F " { k } ) ) = 0 ) -> ( `' F " { k } ) e. dom vol ) |
34 |
29 32 33
|
syl2anc |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) e. dom vol ) |
35 |
|
mblvol |
|- ( ( `' F " { k } ) e. dom vol -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
36 |
34 35
|
syl |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
37 |
36 32
|
eqtrd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = 0 ) |
38 |
37
|
oveq2d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = ( k x. 0 ) ) |
39 |
8
|
frnd |
|- ( ph -> ran F C_ RR ) |
40 |
39
|
ssdifssd |
|- ( ph -> ( ran F \ { 0 } ) C_ RR ) |
41 |
40
|
sselda |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) |
42 |
41
|
recnd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) |
43 |
42
|
mul01d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. 0 ) = 0 ) |
44 |
38 43
|
eqtrd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = 0 ) |
45 |
44
|
sumeq2dv |
|- ( ph -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) = sum_ k e. ( ran F \ { 0 } ) 0 ) |
46 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
47 |
1 46
|
syl |
|- ( ph -> ran F e. Fin ) |
48 |
|
difss |
|- ( ran F \ { 0 } ) C_ ran F |
49 |
|
ssfi |
|- ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) |
50 |
47 48 49
|
sylancl |
|- ( ph -> ( ran F \ { 0 } ) e. Fin ) |
51 |
50
|
olcd |
|- ( ph -> ( ( ran F \ { 0 } ) C_ ( ZZ>= ` 0 ) \/ ( ran F \ { 0 } ) e. Fin ) ) |
52 |
|
sumz |
|- ( ( ( ran F \ { 0 } ) C_ ( ZZ>= ` 0 ) \/ ( ran F \ { 0 } ) e. Fin ) -> sum_ k e. ( ran F \ { 0 } ) 0 = 0 ) |
53 |
51 52
|
syl |
|- ( ph -> sum_ k e. ( ran F \ { 0 } ) 0 = 0 ) |
54 |
45 53
|
eqtrd |
|- ( ph -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) = 0 ) |
55 |
6 54
|
eqtrd |
|- ( ph -> ( S.1 ` F ) = 0 ) |