Metamath Proof Explorer


Theorem itg1add

Description: The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypotheses i1fadd.1
|- ( ph -> F e. dom S.1 )
i1fadd.2
|- ( ph -> G e. dom S.1 )
Assertion itg1add
|- ( ph -> ( S.1 ` ( F oF + G ) ) = ( ( S.1 ` F ) + ( S.1 ` G ) ) )

Proof

Step Hyp Ref Expression
1 i1fadd.1
 |-  ( ph -> F e. dom S.1 )
2 i1fadd.2
 |-  ( ph -> G e. dom S.1 )
3 eqid
 |-  ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) )
4 eqid
 |-  ( + |` ( ran F X. ran G ) ) = ( + |` ( ran F X. ran G ) )
5 1 2 3 4 itg1addlem5
 |-  ( ph -> ( S.1 ` ( F oF + G ) ) = ( ( S.1 ` F ) + ( S.1 ` G ) ) )