Description: The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
||
Assertion | itg1add | |- ( ph -> ( S.1 ` ( F oF + G ) ) = ( ( S.1 ` F ) + ( S.1 ` G ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1fadd.1 | |- ( ph -> F e. dom S.1 ) |
|
2 | i1fadd.2 | |- ( ph -> G e. dom S.1 ) |
|
3 | eqid | |- ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
|
4 | eqid | |- ( + |` ( ran F X. ran G ) ) = ( + |` ( ran F X. ran G ) ) |
|
5 | 1 2 3 4 | itg1addlem5 | |- ( ph -> ( S.1 ` ( F oF + G ) ) = ( ( S.1 ` F ) + ( S.1 ` G ) ) ) |