Step |
Hyp |
Ref |
Expression |
1 |
|
i1fadd.1 |
|- ( ph -> F e. dom S.1 ) |
2 |
|
i1fadd.2 |
|- ( ph -> G e. dom S.1 ) |
3 |
|
itg1add.3 |
|- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
4 |
|
iffalse |
|- ( -. ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) |
5 |
4
|
adantl |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) |
6 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { i } ) e. dom vol ) |
7 |
1 6
|
syl |
|- ( ph -> ( `' F " { i } ) e. dom vol ) |
8 |
|
i1fima |
|- ( G e. dom S.1 -> ( `' G " { j } ) e. dom vol ) |
9 |
2 8
|
syl |
|- ( ph -> ( `' G " { j } ) e. dom vol ) |
10 |
|
inmbl |
|- ( ( ( `' F " { i } ) e. dom vol /\ ( `' G " { j } ) e. dom vol ) -> ( ( `' F " { i } ) i^i ( `' G " { j } ) ) e. dom vol ) |
11 |
7 9 10
|
syl2anc |
|- ( ph -> ( ( `' F " { i } ) i^i ( `' G " { j } ) ) e. dom vol ) |
12 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> ( ( `' F " { i } ) i^i ( `' G " { j } ) ) e. dom vol ) |
13 |
|
mblvol |
|- ( ( ( `' F " { i } ) i^i ( `' G " { j } ) ) e. dom vol -> ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) = ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) |
14 |
12 13
|
syl |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) = ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) |
15 |
5 14
|
eqtrd |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) |
16 |
|
neorian |
|- ( ( i =/= 0 \/ j =/= 0 ) <-> -. ( i = 0 /\ j = 0 ) ) |
17 |
|
inss1 |
|- ( ( `' F " { i } ) i^i ( `' G " { j } ) ) C_ ( `' F " { i } ) |
18 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( `' F " { i } ) e. dom vol ) |
19 |
|
mblss |
|- ( ( `' F " { i } ) e. dom vol -> ( `' F " { i } ) C_ RR ) |
20 |
18 19
|
syl |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( `' F " { i } ) C_ RR ) |
21 |
|
mblvol |
|- ( ( `' F " { i } ) e. dom vol -> ( vol ` ( `' F " { i } ) ) = ( vol* ` ( `' F " { i } ) ) ) |
22 |
18 21
|
syl |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( vol ` ( `' F " { i } ) ) = ( vol* ` ( `' F " { i } ) ) ) |
23 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> F e. dom S.1 ) |
24 |
|
simplrl |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> i e. RR ) |
25 |
|
simpr |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> i =/= 0 ) |
26 |
|
eldifsn |
|- ( i e. ( RR \ { 0 } ) <-> ( i e. RR /\ i =/= 0 ) ) |
27 |
24 25 26
|
sylanbrc |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> i e. ( RR \ { 0 } ) ) |
28 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ i e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { i } ) ) e. RR ) |
29 |
23 27 28
|
syl2anc |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( vol ` ( `' F " { i } ) ) e. RR ) |
30 |
22 29
|
eqeltrrd |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( vol* ` ( `' F " { i } ) ) e. RR ) |
31 |
|
ovolsscl |
|- ( ( ( ( `' F " { i } ) i^i ( `' G " { j } ) ) C_ ( `' F " { i } ) /\ ( `' F " { i } ) C_ RR /\ ( vol* ` ( `' F " { i } ) ) e. RR ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
32 |
17 20 30 31
|
mp3an2i |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ i =/= 0 ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
33 |
|
inss2 |
|- ( ( `' F " { i } ) i^i ( `' G " { j } ) ) C_ ( `' G " { j } ) |
34 |
2
|
adantr |
|- ( ( ph /\ ( i e. RR /\ j e. RR ) ) -> G e. dom S.1 ) |
35 |
34 8
|
syl |
|- ( ( ph /\ ( i e. RR /\ j e. RR ) ) -> ( `' G " { j } ) e. dom vol ) |
36 |
35
|
adantr |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( `' G " { j } ) e. dom vol ) |
37 |
|
mblss |
|- ( ( `' G " { j } ) e. dom vol -> ( `' G " { j } ) C_ RR ) |
38 |
36 37
|
syl |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( `' G " { j } ) C_ RR ) |
39 |
|
mblvol |
|- ( ( `' G " { j } ) e. dom vol -> ( vol ` ( `' G " { j } ) ) = ( vol* ` ( `' G " { j } ) ) ) |
40 |
36 39
|
syl |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( vol ` ( `' G " { j } ) ) = ( vol* ` ( `' G " { j } ) ) ) |
41 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> G e. dom S.1 ) |
42 |
|
simplrr |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> j e. RR ) |
43 |
|
simpr |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> j =/= 0 ) |
44 |
|
eldifsn |
|- ( j e. ( RR \ { 0 } ) <-> ( j e. RR /\ j =/= 0 ) ) |
45 |
42 43 44
|
sylanbrc |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> j e. ( RR \ { 0 } ) ) |
46 |
|
i1fima2sn |
|- ( ( G e. dom S.1 /\ j e. ( RR \ { 0 } ) ) -> ( vol ` ( `' G " { j } ) ) e. RR ) |
47 |
41 45 46
|
syl2anc |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( vol ` ( `' G " { j } ) ) e. RR ) |
48 |
40 47
|
eqeltrrd |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( vol* ` ( `' G " { j } ) ) e. RR ) |
49 |
|
ovolsscl |
|- ( ( ( ( `' F " { i } ) i^i ( `' G " { j } ) ) C_ ( `' G " { j } ) /\ ( `' G " { j } ) C_ RR /\ ( vol* ` ( `' G " { j } ) ) e. RR ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
50 |
33 38 48 49
|
mp3an2i |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ j =/= 0 ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
51 |
32 50
|
jaodan |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ ( i =/= 0 \/ j =/= 0 ) ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
52 |
16 51
|
sylan2br |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> ( vol* ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) e. RR ) |
53 |
15 52
|
eqeltrd |
|- ( ( ( ph /\ ( i e. RR /\ j e. RR ) ) /\ -. ( i = 0 /\ j = 0 ) ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR ) |
54 |
53
|
ex |
|- ( ( ph /\ ( i e. RR /\ j e. RR ) ) -> ( -. ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR ) ) |
55 |
|
iftrue |
|- ( ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = 0 ) |
56 |
|
0re |
|- 0 e. RR |
57 |
55 56
|
eqeltrdi |
|- ( ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR ) |
58 |
54 57
|
pm2.61d2 |
|- ( ( ph /\ ( i e. RR /\ j e. RR ) ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR ) |
59 |
58
|
ralrimivva |
|- ( ph -> A. i e. RR A. j e. RR if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR ) |
60 |
3
|
fmpo |
|- ( A. i e. RR A. j e. RR if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) e. RR <-> I : ( RR X. RR ) --> RR ) |
61 |
59 60
|
sylib |
|- ( ph -> I : ( RR X. RR ) --> RR ) |