Step |
Hyp |
Ref |
Expression |
1 |
|
i1fadd.1 |
|- ( ph -> F e. dom S.1 ) |
2 |
|
i1fadd.2 |
|- ( ph -> G e. dom S.1 ) |
3 |
|
itg1add.3 |
|- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
4 |
|
itg1add.4 |
|- P = ( + |` ( ran F X. ran G ) ) |
5 |
1 2
|
i1fadd |
|- ( ph -> ( F oF + G ) e. dom S.1 ) |
6 |
|
ax-addf |
|- + : ( CC X. CC ) --> CC |
7 |
|
ffn |
|- ( + : ( CC X. CC ) --> CC -> + Fn ( CC X. CC ) ) |
8 |
6 7
|
ax-mp |
|- + Fn ( CC X. CC ) |
9 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
10 |
1 9
|
syl |
|- ( ph -> ran F e. Fin ) |
11 |
|
i1frn |
|- ( G e. dom S.1 -> ran G e. Fin ) |
12 |
2 11
|
syl |
|- ( ph -> ran G e. Fin ) |
13 |
|
xpfi |
|- ( ( ran F e. Fin /\ ran G e. Fin ) -> ( ran F X. ran G ) e. Fin ) |
14 |
10 12 13
|
syl2anc |
|- ( ph -> ( ran F X. ran G ) e. Fin ) |
15 |
|
resfnfinfin |
|- ( ( + Fn ( CC X. CC ) /\ ( ran F X. ran G ) e. Fin ) -> ( + |` ( ran F X. ran G ) ) e. Fin ) |
16 |
8 14 15
|
sylancr |
|- ( ph -> ( + |` ( ran F X. ran G ) ) e. Fin ) |
17 |
4 16
|
eqeltrid |
|- ( ph -> P e. Fin ) |
18 |
|
rnfi |
|- ( P e. Fin -> ran P e. Fin ) |
19 |
17 18
|
syl |
|- ( ph -> ran P e. Fin ) |
20 |
|
difss |
|- ( ran P \ { 0 } ) C_ ran P |
21 |
|
ssfi |
|- ( ( ran P e. Fin /\ ( ran P \ { 0 } ) C_ ran P ) -> ( ran P \ { 0 } ) e. Fin ) |
22 |
19 20 21
|
sylancl |
|- ( ph -> ( ran P \ { 0 } ) e. Fin ) |
23 |
|
ffun |
|- ( + : ( CC X. CC ) --> CC -> Fun + ) |
24 |
6 23
|
ax-mp |
|- Fun + |
25 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
26 |
1 25
|
syl |
|- ( ph -> F : RR --> RR ) |
27 |
26
|
frnd |
|- ( ph -> ran F C_ RR ) |
28 |
|
ax-resscn |
|- RR C_ CC |
29 |
27 28
|
sstrdi |
|- ( ph -> ran F C_ CC ) |
30 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
31 |
2 30
|
syl |
|- ( ph -> G : RR --> RR ) |
32 |
31
|
frnd |
|- ( ph -> ran G C_ RR ) |
33 |
32 28
|
sstrdi |
|- ( ph -> ran G C_ CC ) |
34 |
|
xpss12 |
|- ( ( ran F C_ CC /\ ran G C_ CC ) -> ( ran F X. ran G ) C_ ( CC X. CC ) ) |
35 |
29 33 34
|
syl2anc |
|- ( ph -> ( ran F X. ran G ) C_ ( CC X. CC ) ) |
36 |
6
|
fdmi |
|- dom + = ( CC X. CC ) |
37 |
35 36
|
sseqtrrdi |
|- ( ph -> ( ran F X. ran G ) C_ dom + ) |
38 |
|
funfvima2 |
|- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( <. x , y >. e. ( ran F X. ran G ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
39 |
24 37 38
|
sylancr |
|- ( ph -> ( <. x , y >. e. ( ran F X. ran G ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
40 |
|
opelxpi |
|- ( ( x e. ran F /\ y e. ran G ) -> <. x , y >. e. ( ran F X. ran G ) ) |
41 |
39 40
|
impel |
|- ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) |
42 |
|
df-ov |
|- ( x + y ) = ( + ` <. x , y >. ) |
43 |
4
|
rneqi |
|- ran P = ran ( + |` ( ran F X. ran G ) ) |
44 |
|
df-ima |
|- ( + " ( ran F X. ran G ) ) = ran ( + |` ( ran F X. ran G ) ) |
45 |
43 44
|
eqtr4i |
|- ran P = ( + " ( ran F X. ran G ) ) |
46 |
41 42 45
|
3eltr4g |
|- ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( x + y ) e. ran P ) |
47 |
26
|
ffnd |
|- ( ph -> F Fn RR ) |
48 |
|
dffn3 |
|- ( F Fn RR <-> F : RR --> ran F ) |
49 |
47 48
|
sylib |
|- ( ph -> F : RR --> ran F ) |
50 |
31
|
ffnd |
|- ( ph -> G Fn RR ) |
51 |
|
dffn3 |
|- ( G Fn RR <-> G : RR --> ran G ) |
52 |
50 51
|
sylib |
|- ( ph -> G : RR --> ran G ) |
53 |
|
reex |
|- RR e. _V |
54 |
53
|
a1i |
|- ( ph -> RR e. _V ) |
55 |
|
inidm |
|- ( RR i^i RR ) = RR |
56 |
46 49 52 54 54 55
|
off |
|- ( ph -> ( F oF + G ) : RR --> ran P ) |
57 |
56
|
frnd |
|- ( ph -> ran ( F oF + G ) C_ ran P ) |
58 |
57
|
ssdifd |
|- ( ph -> ( ran ( F oF + G ) \ { 0 } ) C_ ( ran P \ { 0 } ) ) |
59 |
27
|
sselda |
|- ( ( ph /\ y e. ran F ) -> y e. RR ) |
60 |
32
|
sselda |
|- ( ( ph /\ z e. ran G ) -> z e. RR ) |
61 |
59 60
|
anim12dan |
|- ( ( ph /\ ( y e. ran F /\ z e. ran G ) ) -> ( y e. RR /\ z e. RR ) ) |
62 |
|
readdcl |
|- ( ( y e. RR /\ z e. RR ) -> ( y + z ) e. RR ) |
63 |
61 62
|
syl |
|- ( ( ph /\ ( y e. ran F /\ z e. ran G ) ) -> ( y + z ) e. RR ) |
64 |
63
|
ralrimivva |
|- ( ph -> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) |
65 |
|
funimassov |
|- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( ( + " ( ran F X. ran G ) ) C_ RR <-> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) ) |
66 |
24 37 65
|
sylancr |
|- ( ph -> ( ( + " ( ran F X. ran G ) ) C_ RR <-> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) ) |
67 |
64 66
|
mpbird |
|- ( ph -> ( + " ( ran F X. ran G ) ) C_ RR ) |
68 |
45 67
|
eqsstrid |
|- ( ph -> ran P C_ RR ) |
69 |
68
|
ssdifd |
|- ( ph -> ( ran P \ { 0 } ) C_ ( RR \ { 0 } ) ) |
70 |
|
itg1val2 |
|- ( ( ( F oF + G ) e. dom S.1 /\ ( ( ran P \ { 0 } ) e. Fin /\ ( ran ( F oF + G ) \ { 0 } ) C_ ( ran P \ { 0 } ) /\ ( ran P \ { 0 } ) C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` ( F oF + G ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) ) |
71 |
5 22 58 69 70
|
syl13anc |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) ) |
72 |
31
|
adantr |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> G : RR --> RR ) |
73 |
12
|
adantr |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ran G e. Fin ) |
74 |
|
inss2 |
|- ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) |
75 |
74
|
a1i |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) ) |
76 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { ( w - z ) } ) e. dom vol ) |
77 |
1 76
|
syl |
|- ( ph -> ( `' F " { ( w - z ) } ) e. dom vol ) |
78 |
|
i1fima |
|- ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) |
79 |
2 78
|
syl |
|- ( ph -> ( `' G " { z } ) e. dom vol ) |
80 |
|
inmbl |
|- ( ( ( `' F " { ( w - z ) } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
81 |
77 79 80
|
syl2anc |
|- ( ph -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
82 |
81
|
ad2antrr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
83 |
20 68
|
sstrid |
|- ( ph -> ( ran P \ { 0 } ) C_ RR ) |
84 |
83
|
sselda |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> w e. RR ) |
85 |
84
|
adantr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w e. RR ) |
86 |
60
|
adantlr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> z e. RR ) |
87 |
85 86
|
resubcld |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( w - z ) e. RR ) |
88 |
85
|
recnd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w e. CC ) |
89 |
86
|
recnd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> z e. CC ) |
90 |
88 89
|
npcand |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) + z ) = w ) |
91 |
|
eldifsni |
|- ( w e. ( ran P \ { 0 } ) -> w =/= 0 ) |
92 |
91
|
ad2antlr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w =/= 0 ) |
93 |
90 92
|
eqnetrd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) + z ) =/= 0 ) |
94 |
|
oveq12 |
|- ( ( ( w - z ) = 0 /\ z = 0 ) -> ( ( w - z ) + z ) = ( 0 + 0 ) ) |
95 |
|
00id |
|- ( 0 + 0 ) = 0 |
96 |
94 95
|
eqtrdi |
|- ( ( ( w - z ) = 0 /\ z = 0 ) -> ( ( w - z ) + z ) = 0 ) |
97 |
96
|
necon3ai |
|- ( ( ( w - z ) + z ) =/= 0 -> -. ( ( w - z ) = 0 /\ z = 0 ) ) |
98 |
93 97
|
syl |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> -. ( ( w - z ) = 0 /\ z = 0 ) ) |
99 |
1 2 3
|
itg1addlem3 |
|- ( ( ( ( w - z ) e. RR /\ z e. RR ) /\ -. ( ( w - z ) = 0 /\ z = 0 ) ) -> ( ( w - z ) I z ) = ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
100 |
87 86 98 99
|
syl21anc |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) = ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
101 |
1 2 3
|
itg1addlem2 |
|- ( ph -> I : ( RR X. RR ) --> RR ) |
102 |
101
|
ad2antrr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
103 |
102 87 86
|
fovrnd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) e. RR ) |
104 |
100 103
|
eqeltrrd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
105 |
72 73 75 82 104
|
itg1addlem1 |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) = sum_ z e. ran G ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
106 |
84
|
recnd |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> w e. CC ) |
107 |
1 2
|
i1faddlem |
|- ( ( ph /\ w e. CC ) -> ( `' ( F oF + G ) " { w } ) = U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) |
108 |
106 107
|
syldan |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( `' ( F oF + G ) " { w } ) = U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) |
109 |
108
|
fveq2d |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` ( `' ( F oF + G ) " { w } ) ) = ( vol ` U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
110 |
100
|
sumeq2dv |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> sum_ z e. ran G ( ( w - z ) I z ) = sum_ z e. ran G ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
111 |
105 109 110
|
3eqtr4d |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` ( `' ( F oF + G ) " { w } ) ) = sum_ z e. ran G ( ( w - z ) I z ) ) |
112 |
111
|
oveq2d |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = ( w x. sum_ z e. ran G ( ( w - z ) I z ) ) ) |
113 |
103
|
recnd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) e. CC ) |
114 |
73 106 113
|
fsummulc2 |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. sum_ z e. ran G ( ( w - z ) I z ) ) = sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
115 |
112 114
|
eqtrd |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
116 |
115
|
sumeq2dv |
|- ( ph -> sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = sum_ w e. ( ran P \ { 0 } ) sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
117 |
88 113
|
mulcld |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
118 |
117
|
anasss |
|- ( ( ph /\ ( w e. ( ran P \ { 0 } ) /\ z e. ran G ) ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
119 |
22 12 118
|
fsumcom |
|- ( ph -> sum_ w e. ( ran P \ { 0 } ) sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
120 |
71 116 119
|
3eqtrd |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
121 |
|
oveq1 |
|- ( y = ( w - z ) -> ( y + z ) = ( ( w - z ) + z ) ) |
122 |
|
oveq1 |
|- ( y = ( w - z ) -> ( y I z ) = ( ( w - z ) I z ) ) |
123 |
121 122
|
oveq12d |
|- ( y = ( w - z ) -> ( ( y + z ) x. ( y I z ) ) = ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) ) |
124 |
19
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ran P e. Fin ) |
125 |
68
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ran P C_ RR ) |
126 |
125
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> v e. RR ) |
127 |
60
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> z e. RR ) |
128 |
126 127
|
resubcld |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> ( v - z ) e. RR ) |
129 |
128
|
ex |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P -> ( v - z ) e. RR ) ) |
130 |
126
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> v e. CC ) |
131 |
130
|
adantrr |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> v e. CC ) |
132 |
68
|
sselda |
|- ( ( ph /\ y e. ran P ) -> y e. RR ) |
133 |
132
|
ad2ant2rl |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> y e. RR ) |
134 |
133
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> y e. CC ) |
135 |
60
|
recnd |
|- ( ( ph /\ z e. ran G ) -> z e. CC ) |
136 |
135
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> z e. CC ) |
137 |
131 134 136
|
subcan2ad |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> ( ( v - z ) = ( y - z ) <-> v = y ) ) |
138 |
137
|
ex |
|- ( ( ph /\ z e. ran G ) -> ( ( v e. ran P /\ y e. ran P ) -> ( ( v - z ) = ( y - z ) <-> v = y ) ) ) |
139 |
129 138
|
dom2lem |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR ) |
140 |
|
f1f1orn |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
141 |
139 140
|
syl |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
142 |
|
oveq1 |
|- ( v = w -> ( v - z ) = ( w - z ) ) |
143 |
|
eqid |
|- ( v e. ran P |-> ( v - z ) ) = ( v e. ran P |-> ( v - z ) ) |
144 |
|
ovex |
|- ( w - z ) e. _V |
145 |
142 143 144
|
fvmpt |
|- ( w e. ran P -> ( ( v e. ran P |-> ( v - z ) ) ` w ) = ( w - z ) ) |
146 |
145
|
adantl |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( v e. ran P |-> ( v - z ) ) ` w ) = ( w - z ) ) |
147 |
|
f1f |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR -> ( v e. ran P |-> ( v - z ) ) : ran P --> RR ) |
148 |
|
frn |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P --> RR -> ran ( v e. ran P |-> ( v - z ) ) C_ RR ) |
149 |
139 147 148
|
3syl |
|- ( ( ph /\ z e. ran G ) -> ran ( v e. ran P |-> ( v - z ) ) C_ RR ) |
150 |
149
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> y e. RR ) |
151 |
60
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> z e. RR ) |
152 |
150 151
|
readdcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( y + z ) e. RR ) |
153 |
101
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> I : ( RR X. RR ) --> RR ) |
154 |
153 150 151
|
fovrnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( y I z ) e. RR ) |
155 |
152 154
|
remulcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( ( y + z ) x. ( y I z ) ) e. RR ) |
156 |
155
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
157 |
123 124 141 146 156
|
fsumf1o |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) = sum_ w e. ran P ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) ) |
158 |
125
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> w e. RR ) |
159 |
158
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> w e. CC ) |
160 |
135
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> z e. CC ) |
161 |
159 160
|
npcand |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( w - z ) + z ) = w ) |
162 |
161
|
oveq1d |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) = ( w x. ( ( w - z ) I z ) ) ) |
163 |
162
|
sumeq2dv |
|- ( ( ph /\ z e. ran G ) -> sum_ w e. ran P ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
164 |
157 163
|
eqtrd |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
165 |
37
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ran F X. ran G ) C_ dom + ) |
166 |
|
simpr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. ran F ) |
167 |
|
simplr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. ran G ) |
168 |
166 167
|
opelxpd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> <. y , z >. e. ( ran F X. ran G ) ) |
169 |
|
funfvima2 |
|- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( <. y , z >. e. ( ran F X. ran G ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
170 |
24 169
|
mpan |
|- ( ( ran F X. ran G ) C_ dom + -> ( <. y , z >. e. ( ran F X. ran G ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
171 |
165 168 170
|
sylc |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) |
172 |
|
df-ov |
|- ( y + z ) = ( + ` <. y , z >. ) |
173 |
171 172 45
|
3eltr4g |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y + z ) e. ran P ) |
174 |
59
|
adantlr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. RR ) |
175 |
174
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. CC ) |
176 |
135
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. CC ) |
177 |
175 176
|
pncand |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) - z ) = y ) |
178 |
177
|
eqcomd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y = ( ( y + z ) - z ) ) |
179 |
|
oveq1 |
|- ( v = ( y + z ) -> ( v - z ) = ( ( y + z ) - z ) ) |
180 |
179
|
rspceeqv |
|- ( ( ( y + z ) e. ran P /\ y = ( ( y + z ) - z ) ) -> E. v e. ran P y = ( v - z ) ) |
181 |
173 178 180
|
syl2anc |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> E. v e. ran P y = ( v - z ) ) |
182 |
181
|
ralrimiva |
|- ( ( ph /\ z e. ran G ) -> A. y e. ran F E. v e. ran P y = ( v - z ) ) |
183 |
|
ssabral |
|- ( ran F C_ { y | E. v e. ran P y = ( v - z ) } <-> A. y e. ran F E. v e. ran P y = ( v - z ) ) |
184 |
182 183
|
sylibr |
|- ( ( ph /\ z e. ran G ) -> ran F C_ { y | E. v e. ran P y = ( v - z ) } ) |
185 |
143
|
rnmpt |
|- ran ( v e. ran P |-> ( v - z ) ) = { y | E. v e. ran P y = ( v - z ) } |
186 |
184 185
|
sseqtrrdi |
|- ( ( ph /\ z e. ran G ) -> ran F C_ ran ( v e. ran P |-> ( v - z ) ) ) |
187 |
60
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. RR ) |
188 |
174 187
|
readdcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y + z ) e. RR ) |
189 |
101
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
190 |
189 174 187
|
fovrnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
191 |
188 190
|
remulcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) x. ( y I z ) ) e. RR ) |
192 |
191
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
193 |
149
|
ssdifd |
|- ( ( ph /\ z e. ran G ) -> ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) C_ ( RR \ ran F ) ) |
194 |
193
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) ) -> y e. ( RR \ ran F ) ) |
195 |
|
eldifi |
|- ( y e. ( RR \ ran F ) -> y e. RR ) |
196 |
195
|
ad2antrl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> y e. RR ) |
197 |
60
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> z e. RR ) |
198 |
|
simprr |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. ( y = 0 /\ z = 0 ) ) |
199 |
1 2 3
|
itg1addlem3 |
|- ( ( ( y e. RR /\ z e. RR ) /\ -. ( y = 0 /\ z = 0 ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
200 |
196 197 198 199
|
syl21anc |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
201 |
|
inss1 |
|- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) |
202 |
|
eldifn |
|- ( y e. ( RR \ ran F ) -> -. y e. ran F ) |
203 |
202
|
ad2antrl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. y e. ran F ) |
204 |
|
vex |
|- v e. _V |
205 |
204
|
eliniseg |
|- ( y e. _V -> ( v e. ( `' F " { y } ) <-> v F y ) ) |
206 |
205
|
elv |
|- ( v e. ( `' F " { y } ) <-> v F y ) |
207 |
|
vex |
|- y e. _V |
208 |
204 207
|
brelrn |
|- ( v F y -> y e. ran F ) |
209 |
206 208
|
sylbi |
|- ( v e. ( `' F " { y } ) -> y e. ran F ) |
210 |
203 209
|
nsyl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. v e. ( `' F " { y } ) ) |
211 |
210
|
pm2.21d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( v e. ( `' F " { y } ) -> v e. (/) ) ) |
212 |
211
|
ssrdv |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( `' F " { y } ) C_ (/) ) |
213 |
201 212
|
sstrid |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ (/) ) |
214 |
|
ss0 |
|- ( ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ (/) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = (/) ) |
215 |
213 214
|
syl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = (/) ) |
216 |
215
|
fveq2d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = ( vol ` (/) ) ) |
217 |
|
0mbl |
|- (/) e. dom vol |
218 |
|
mblvol |
|- ( (/) e. dom vol -> ( vol ` (/) ) = ( vol* ` (/) ) ) |
219 |
217 218
|
ax-mp |
|- ( vol ` (/) ) = ( vol* ` (/) ) |
220 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
221 |
219 220
|
eqtri |
|- ( vol ` (/) ) = 0 |
222 |
216 221
|
eqtrdi |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = 0 ) |
223 |
200 222
|
eqtrd |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y I z ) = 0 ) |
224 |
223
|
oveq2d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. ( y I z ) ) = ( ( y + z ) x. 0 ) ) |
225 |
196 197
|
readdcld |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y + z ) e. RR ) |
226 |
225
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y + z ) e. CC ) |
227 |
226
|
mul01d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. 0 ) = 0 ) |
228 |
224 227
|
eqtrd |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
229 |
228
|
expr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( RR \ ran F ) ) -> ( -. ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) ) |
230 |
|
oveq12 |
|- ( ( y = 0 /\ z = 0 ) -> ( y + z ) = ( 0 + 0 ) ) |
231 |
230 95
|
eqtrdi |
|- ( ( y = 0 /\ z = 0 ) -> ( y + z ) = 0 ) |
232 |
|
oveq12 |
|- ( ( y = 0 /\ z = 0 ) -> ( y I z ) = ( 0 I 0 ) ) |
233 |
|
0re |
|- 0 e. RR |
234 |
|
iftrue |
|- ( ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = 0 ) |
235 |
|
c0ex |
|- 0 e. _V |
236 |
234 3 235
|
ovmpoa |
|- ( ( 0 e. RR /\ 0 e. RR ) -> ( 0 I 0 ) = 0 ) |
237 |
233 233 236
|
mp2an |
|- ( 0 I 0 ) = 0 |
238 |
232 237
|
eqtrdi |
|- ( ( y = 0 /\ z = 0 ) -> ( y I z ) = 0 ) |
239 |
231 238
|
oveq12d |
|- ( ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = ( 0 x. 0 ) ) |
240 |
|
0cn |
|- 0 e. CC |
241 |
240
|
mul01i |
|- ( 0 x. 0 ) = 0 |
242 |
239 241
|
eqtrdi |
|- ( ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
243 |
229 242
|
pm2.61d2 |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( RR \ ran F ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
244 |
194 243
|
syldan |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
245 |
|
f1ofo |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) -> ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
246 |
141 245
|
syl |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
247 |
|
fofi |
|- ( ( ran P e. Fin /\ ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) -> ran ( v e. ran P |-> ( v - z ) ) e. Fin ) |
248 |
124 246 247
|
syl2anc |
|- ( ( ph /\ z e. ran G ) -> ran ( v e. ran P |-> ( v - z ) ) e. Fin ) |
249 |
186 192 244 248
|
fsumss |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) ) |
250 |
20
|
a1i |
|- ( ( ph /\ z e. ran G ) -> ( ran P \ { 0 } ) C_ ran P ) |
251 |
117
|
an32s |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
252 |
|
dfin4 |
|- ( ran P i^i { 0 } ) = ( ran P \ ( ran P \ { 0 } ) ) |
253 |
|
inss2 |
|- ( ran P i^i { 0 } ) C_ { 0 } |
254 |
252 253
|
eqsstrri |
|- ( ran P \ ( ran P \ { 0 } ) ) C_ { 0 } |
255 |
254
|
sseli |
|- ( w e. ( ran P \ ( ran P \ { 0 } ) ) -> w e. { 0 } ) |
256 |
|
elsni |
|- ( w e. { 0 } -> w = 0 ) |
257 |
256
|
adantl |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> w = 0 ) |
258 |
257
|
oveq1d |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w x. ( ( w - z ) I z ) ) = ( 0 x. ( ( w - z ) I z ) ) ) |
259 |
101
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> I : ( RR X. RR ) --> RR ) |
260 |
257 233
|
eqeltrdi |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> w e. RR ) |
261 |
60
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> z e. RR ) |
262 |
260 261
|
resubcld |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w - z ) e. RR ) |
263 |
259 262 261
|
fovrnd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( ( w - z ) I z ) e. RR ) |
264 |
263
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( ( w - z ) I z ) e. CC ) |
265 |
264
|
mul02d |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( 0 x. ( ( w - z ) I z ) ) = 0 ) |
266 |
258 265
|
eqtrd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w x. ( ( w - z ) I z ) ) = 0 ) |
267 |
255 266
|
sylan2 |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ( ran P \ ( ran P \ { 0 } ) ) ) -> ( w x. ( ( w - z ) I z ) ) = 0 ) |
268 |
250 251 267 124
|
fsumss |
|- ( ( ph /\ z e. ran G ) -> sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
269 |
164 249 268
|
3eqtr4d |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
270 |
269
|
sumeq2dv |
|- ( ph -> sum_ z e. ran G sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
271 |
192
|
anasss |
|- ( ( ph /\ ( z e. ran G /\ y e. ran F ) ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
272 |
12 10 271
|
fsumcom |
|- ( ph -> sum_ z e. ran G sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |
273 |
120 270 272
|
3eqtr2d |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |