| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fadd.1 |
|- ( ph -> F e. dom S.1 ) |
| 2 |
|
i1fadd.2 |
|- ( ph -> G e. dom S.1 ) |
| 3 |
|
itg1add.3 |
|- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
| 4 |
|
itg1add.4 |
|- P = ( + |` ( ran F X. ran G ) ) |
| 5 |
1 2
|
i1fadd |
|- ( ph -> ( F oF + G ) e. dom S.1 ) |
| 6 |
|
ax-addf |
|- + : ( CC X. CC ) --> CC |
| 7 |
|
ffn |
|- ( + : ( CC X. CC ) --> CC -> + Fn ( CC X. CC ) ) |
| 8 |
6 7
|
ax-mp |
|- + Fn ( CC X. CC ) |
| 9 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
| 10 |
1 9
|
syl |
|- ( ph -> ran F e. Fin ) |
| 11 |
|
i1frn |
|- ( G e. dom S.1 -> ran G e. Fin ) |
| 12 |
2 11
|
syl |
|- ( ph -> ran G e. Fin ) |
| 13 |
|
xpfi |
|- ( ( ran F e. Fin /\ ran G e. Fin ) -> ( ran F X. ran G ) e. Fin ) |
| 14 |
10 12 13
|
syl2anc |
|- ( ph -> ( ran F X. ran G ) e. Fin ) |
| 15 |
|
resfnfinfin |
|- ( ( + Fn ( CC X. CC ) /\ ( ran F X. ran G ) e. Fin ) -> ( + |` ( ran F X. ran G ) ) e. Fin ) |
| 16 |
8 14 15
|
sylancr |
|- ( ph -> ( + |` ( ran F X. ran G ) ) e. Fin ) |
| 17 |
4 16
|
eqeltrid |
|- ( ph -> P e. Fin ) |
| 18 |
|
rnfi |
|- ( P e. Fin -> ran P e. Fin ) |
| 19 |
17 18
|
syl |
|- ( ph -> ran P e. Fin ) |
| 20 |
|
difss |
|- ( ran P \ { 0 } ) C_ ran P |
| 21 |
|
ssfi |
|- ( ( ran P e. Fin /\ ( ran P \ { 0 } ) C_ ran P ) -> ( ran P \ { 0 } ) e. Fin ) |
| 22 |
19 20 21
|
sylancl |
|- ( ph -> ( ran P \ { 0 } ) e. Fin ) |
| 23 |
|
ffun |
|- ( + : ( CC X. CC ) --> CC -> Fun + ) |
| 24 |
6 23
|
ax-mp |
|- Fun + |
| 25 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
| 26 |
1 25
|
syl |
|- ( ph -> F : RR --> RR ) |
| 27 |
26
|
frnd |
|- ( ph -> ran F C_ RR ) |
| 28 |
|
ax-resscn |
|- RR C_ CC |
| 29 |
27 28
|
sstrdi |
|- ( ph -> ran F C_ CC ) |
| 30 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
| 31 |
2 30
|
syl |
|- ( ph -> G : RR --> RR ) |
| 32 |
31
|
frnd |
|- ( ph -> ran G C_ RR ) |
| 33 |
32 28
|
sstrdi |
|- ( ph -> ran G C_ CC ) |
| 34 |
|
xpss12 |
|- ( ( ran F C_ CC /\ ran G C_ CC ) -> ( ran F X. ran G ) C_ ( CC X. CC ) ) |
| 35 |
29 33 34
|
syl2anc |
|- ( ph -> ( ran F X. ran G ) C_ ( CC X. CC ) ) |
| 36 |
6
|
fdmi |
|- dom + = ( CC X. CC ) |
| 37 |
35 36
|
sseqtrrdi |
|- ( ph -> ( ran F X. ran G ) C_ dom + ) |
| 38 |
|
funfvima2 |
|- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( <. x , y >. e. ( ran F X. ran G ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
| 39 |
24 37 38
|
sylancr |
|- ( ph -> ( <. x , y >. e. ( ran F X. ran G ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
| 40 |
|
opelxpi |
|- ( ( x e. ran F /\ y e. ran G ) -> <. x , y >. e. ( ran F X. ran G ) ) |
| 41 |
39 40
|
impel |
|- ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) |
| 42 |
|
df-ov |
|- ( x + y ) = ( + ` <. x , y >. ) |
| 43 |
4
|
rneqi |
|- ran P = ran ( + |` ( ran F X. ran G ) ) |
| 44 |
|
df-ima |
|- ( + " ( ran F X. ran G ) ) = ran ( + |` ( ran F X. ran G ) ) |
| 45 |
43 44
|
eqtr4i |
|- ran P = ( + " ( ran F X. ran G ) ) |
| 46 |
41 42 45
|
3eltr4g |
|- ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( x + y ) e. ran P ) |
| 47 |
26
|
ffnd |
|- ( ph -> F Fn RR ) |
| 48 |
|
dffn3 |
|- ( F Fn RR <-> F : RR --> ran F ) |
| 49 |
47 48
|
sylib |
|- ( ph -> F : RR --> ran F ) |
| 50 |
31
|
ffnd |
|- ( ph -> G Fn RR ) |
| 51 |
|
dffn3 |
|- ( G Fn RR <-> G : RR --> ran G ) |
| 52 |
50 51
|
sylib |
|- ( ph -> G : RR --> ran G ) |
| 53 |
|
reex |
|- RR e. _V |
| 54 |
53
|
a1i |
|- ( ph -> RR e. _V ) |
| 55 |
|
inidm |
|- ( RR i^i RR ) = RR |
| 56 |
46 49 52 54 54 55
|
off |
|- ( ph -> ( F oF + G ) : RR --> ran P ) |
| 57 |
56
|
frnd |
|- ( ph -> ran ( F oF + G ) C_ ran P ) |
| 58 |
57
|
ssdifd |
|- ( ph -> ( ran ( F oF + G ) \ { 0 } ) C_ ( ran P \ { 0 } ) ) |
| 59 |
27
|
sselda |
|- ( ( ph /\ y e. ran F ) -> y e. RR ) |
| 60 |
32
|
sselda |
|- ( ( ph /\ z e. ran G ) -> z e. RR ) |
| 61 |
59 60
|
anim12dan |
|- ( ( ph /\ ( y e. ran F /\ z e. ran G ) ) -> ( y e. RR /\ z e. RR ) ) |
| 62 |
|
readdcl |
|- ( ( y e. RR /\ z e. RR ) -> ( y + z ) e. RR ) |
| 63 |
61 62
|
syl |
|- ( ( ph /\ ( y e. ran F /\ z e. ran G ) ) -> ( y + z ) e. RR ) |
| 64 |
63
|
ralrimivva |
|- ( ph -> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) |
| 65 |
|
funimassov |
|- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( ( + " ( ran F X. ran G ) ) C_ RR <-> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) ) |
| 66 |
24 37 65
|
sylancr |
|- ( ph -> ( ( + " ( ran F X. ran G ) ) C_ RR <-> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) ) |
| 67 |
64 66
|
mpbird |
|- ( ph -> ( + " ( ran F X. ran G ) ) C_ RR ) |
| 68 |
45 67
|
eqsstrid |
|- ( ph -> ran P C_ RR ) |
| 69 |
68
|
ssdifd |
|- ( ph -> ( ran P \ { 0 } ) C_ ( RR \ { 0 } ) ) |
| 70 |
|
itg1val2 |
|- ( ( ( F oF + G ) e. dom S.1 /\ ( ( ran P \ { 0 } ) e. Fin /\ ( ran ( F oF + G ) \ { 0 } ) C_ ( ran P \ { 0 } ) /\ ( ran P \ { 0 } ) C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` ( F oF + G ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) ) |
| 71 |
5 22 58 69 70
|
syl13anc |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) ) |
| 72 |
31
|
adantr |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> G : RR --> RR ) |
| 73 |
12
|
adantr |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ran G e. Fin ) |
| 74 |
|
inss2 |
|- ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) |
| 75 |
74
|
a1i |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) ) |
| 76 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { ( w - z ) } ) e. dom vol ) |
| 77 |
1 76
|
syl |
|- ( ph -> ( `' F " { ( w - z ) } ) e. dom vol ) |
| 78 |
|
i1fima |
|- ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) |
| 79 |
2 78
|
syl |
|- ( ph -> ( `' G " { z } ) e. dom vol ) |
| 80 |
|
inmbl |
|- ( ( ( `' F " { ( w - z ) } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 81 |
77 79 80
|
syl2anc |
|- ( ph -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 82 |
81
|
ad2antrr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 83 |
20 68
|
sstrid |
|- ( ph -> ( ran P \ { 0 } ) C_ RR ) |
| 84 |
83
|
sselda |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> w e. RR ) |
| 85 |
84
|
adantr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w e. RR ) |
| 86 |
60
|
adantlr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> z e. RR ) |
| 87 |
85 86
|
resubcld |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( w - z ) e. RR ) |
| 88 |
85
|
recnd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w e. CC ) |
| 89 |
86
|
recnd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> z e. CC ) |
| 90 |
88 89
|
npcand |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) + z ) = w ) |
| 91 |
|
eldifsni |
|- ( w e. ( ran P \ { 0 } ) -> w =/= 0 ) |
| 92 |
91
|
ad2antlr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w =/= 0 ) |
| 93 |
90 92
|
eqnetrd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) + z ) =/= 0 ) |
| 94 |
|
oveq12 |
|- ( ( ( w - z ) = 0 /\ z = 0 ) -> ( ( w - z ) + z ) = ( 0 + 0 ) ) |
| 95 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 96 |
94 95
|
eqtrdi |
|- ( ( ( w - z ) = 0 /\ z = 0 ) -> ( ( w - z ) + z ) = 0 ) |
| 97 |
96
|
necon3ai |
|- ( ( ( w - z ) + z ) =/= 0 -> -. ( ( w - z ) = 0 /\ z = 0 ) ) |
| 98 |
93 97
|
syl |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> -. ( ( w - z ) = 0 /\ z = 0 ) ) |
| 99 |
1 2 3
|
itg1addlem3 |
|- ( ( ( ( w - z ) e. RR /\ z e. RR ) /\ -. ( ( w - z ) = 0 /\ z = 0 ) ) -> ( ( w - z ) I z ) = ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 100 |
87 86 98 99
|
syl21anc |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) = ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 101 |
1 2 3
|
itg1addlem2 |
|- ( ph -> I : ( RR X. RR ) --> RR ) |
| 102 |
101
|
ad2antrr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
| 103 |
102 87 86
|
fovcdmd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) e. RR ) |
| 104 |
100 103
|
eqeltrrd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 105 |
72 73 75 82 104
|
itg1addlem1 |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) = sum_ z e. ran G ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 106 |
84
|
recnd |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> w e. CC ) |
| 107 |
1 2
|
i1faddlem |
|- ( ( ph /\ w e. CC ) -> ( `' ( F oF + G ) " { w } ) = U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) |
| 108 |
106 107
|
syldan |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( `' ( F oF + G ) " { w } ) = U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) |
| 109 |
108
|
fveq2d |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` ( `' ( F oF + G ) " { w } ) ) = ( vol ` U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 110 |
100
|
sumeq2dv |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> sum_ z e. ran G ( ( w - z ) I z ) = sum_ z e. ran G ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
| 111 |
105 109 110
|
3eqtr4d |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` ( `' ( F oF + G ) " { w } ) ) = sum_ z e. ran G ( ( w - z ) I z ) ) |
| 112 |
111
|
oveq2d |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = ( w x. sum_ z e. ran G ( ( w - z ) I z ) ) ) |
| 113 |
103
|
recnd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) e. CC ) |
| 114 |
73 106 113
|
fsummulc2 |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. sum_ z e. ran G ( ( w - z ) I z ) ) = sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
| 115 |
112 114
|
eqtrd |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
| 116 |
115
|
sumeq2dv |
|- ( ph -> sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = sum_ w e. ( ran P \ { 0 } ) sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
| 117 |
88 113
|
mulcld |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
| 118 |
117
|
anasss |
|- ( ( ph /\ ( w e. ( ran P \ { 0 } ) /\ z e. ran G ) ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
| 119 |
22 12 118
|
fsumcom |
|- ( ph -> sum_ w e. ( ran P \ { 0 } ) sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
| 120 |
71 116 119
|
3eqtrd |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
| 121 |
|
oveq1 |
|- ( y = ( w - z ) -> ( y + z ) = ( ( w - z ) + z ) ) |
| 122 |
|
oveq1 |
|- ( y = ( w - z ) -> ( y I z ) = ( ( w - z ) I z ) ) |
| 123 |
121 122
|
oveq12d |
|- ( y = ( w - z ) -> ( ( y + z ) x. ( y I z ) ) = ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) ) |
| 124 |
19
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ran P e. Fin ) |
| 125 |
68
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ran P C_ RR ) |
| 126 |
125
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> v e. RR ) |
| 127 |
60
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> z e. RR ) |
| 128 |
126 127
|
resubcld |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> ( v - z ) e. RR ) |
| 129 |
128
|
ex |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P -> ( v - z ) e. RR ) ) |
| 130 |
126
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> v e. CC ) |
| 131 |
130
|
adantrr |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> v e. CC ) |
| 132 |
68
|
sselda |
|- ( ( ph /\ y e. ran P ) -> y e. RR ) |
| 133 |
132
|
ad2ant2rl |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> y e. RR ) |
| 134 |
133
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> y e. CC ) |
| 135 |
60
|
recnd |
|- ( ( ph /\ z e. ran G ) -> z e. CC ) |
| 136 |
135
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> z e. CC ) |
| 137 |
131 134 136
|
subcan2ad |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> ( ( v - z ) = ( y - z ) <-> v = y ) ) |
| 138 |
137
|
ex |
|- ( ( ph /\ z e. ran G ) -> ( ( v e. ran P /\ y e. ran P ) -> ( ( v - z ) = ( y - z ) <-> v = y ) ) ) |
| 139 |
129 138
|
dom2lem |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR ) |
| 140 |
|
f1f1orn |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
| 141 |
139 140
|
syl |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
| 142 |
|
oveq1 |
|- ( v = w -> ( v - z ) = ( w - z ) ) |
| 143 |
|
eqid |
|- ( v e. ran P |-> ( v - z ) ) = ( v e. ran P |-> ( v - z ) ) |
| 144 |
|
ovex |
|- ( w - z ) e. _V |
| 145 |
142 143 144
|
fvmpt |
|- ( w e. ran P -> ( ( v e. ran P |-> ( v - z ) ) ` w ) = ( w - z ) ) |
| 146 |
145
|
adantl |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( v e. ran P |-> ( v - z ) ) ` w ) = ( w - z ) ) |
| 147 |
|
f1f |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR -> ( v e. ran P |-> ( v - z ) ) : ran P --> RR ) |
| 148 |
|
frn |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P --> RR -> ran ( v e. ran P |-> ( v - z ) ) C_ RR ) |
| 149 |
139 147 148
|
3syl |
|- ( ( ph /\ z e. ran G ) -> ran ( v e. ran P |-> ( v - z ) ) C_ RR ) |
| 150 |
149
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> y e. RR ) |
| 151 |
60
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> z e. RR ) |
| 152 |
150 151
|
readdcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( y + z ) e. RR ) |
| 153 |
101
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> I : ( RR X. RR ) --> RR ) |
| 154 |
153 150 151
|
fovcdmd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( y I z ) e. RR ) |
| 155 |
152 154
|
remulcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( ( y + z ) x. ( y I z ) ) e. RR ) |
| 156 |
155
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
| 157 |
123 124 141 146 156
|
fsumf1o |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) = sum_ w e. ran P ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) ) |
| 158 |
125
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> w e. RR ) |
| 159 |
158
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> w e. CC ) |
| 160 |
135
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> z e. CC ) |
| 161 |
159 160
|
npcand |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( w - z ) + z ) = w ) |
| 162 |
161
|
oveq1d |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) = ( w x. ( ( w - z ) I z ) ) ) |
| 163 |
162
|
sumeq2dv |
|- ( ( ph /\ z e. ran G ) -> sum_ w e. ran P ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
| 164 |
157 163
|
eqtrd |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
| 165 |
37
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ran F X. ran G ) C_ dom + ) |
| 166 |
|
simpr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. ran F ) |
| 167 |
|
simplr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. ran G ) |
| 168 |
166 167
|
opelxpd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> <. y , z >. e. ( ran F X. ran G ) ) |
| 169 |
|
funfvima2 |
|- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( <. y , z >. e. ( ran F X. ran G ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
| 170 |
24 169
|
mpan |
|- ( ( ran F X. ran G ) C_ dom + -> ( <. y , z >. e. ( ran F X. ran G ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
| 171 |
165 168 170
|
sylc |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) |
| 172 |
|
df-ov |
|- ( y + z ) = ( + ` <. y , z >. ) |
| 173 |
171 172 45
|
3eltr4g |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y + z ) e. ran P ) |
| 174 |
59
|
adantlr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. RR ) |
| 175 |
174
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. CC ) |
| 176 |
135
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. CC ) |
| 177 |
175 176
|
pncand |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) - z ) = y ) |
| 178 |
177
|
eqcomd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y = ( ( y + z ) - z ) ) |
| 179 |
|
oveq1 |
|- ( v = ( y + z ) -> ( v - z ) = ( ( y + z ) - z ) ) |
| 180 |
179
|
rspceeqv |
|- ( ( ( y + z ) e. ran P /\ y = ( ( y + z ) - z ) ) -> E. v e. ran P y = ( v - z ) ) |
| 181 |
173 178 180
|
syl2anc |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> E. v e. ran P y = ( v - z ) ) |
| 182 |
181
|
ralrimiva |
|- ( ( ph /\ z e. ran G ) -> A. y e. ran F E. v e. ran P y = ( v - z ) ) |
| 183 |
|
ssabral |
|- ( ran F C_ { y | E. v e. ran P y = ( v - z ) } <-> A. y e. ran F E. v e. ran P y = ( v - z ) ) |
| 184 |
182 183
|
sylibr |
|- ( ( ph /\ z e. ran G ) -> ran F C_ { y | E. v e. ran P y = ( v - z ) } ) |
| 185 |
143
|
rnmpt |
|- ran ( v e. ran P |-> ( v - z ) ) = { y | E. v e. ran P y = ( v - z ) } |
| 186 |
184 185
|
sseqtrrdi |
|- ( ( ph /\ z e. ran G ) -> ran F C_ ran ( v e. ran P |-> ( v - z ) ) ) |
| 187 |
60
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. RR ) |
| 188 |
174 187
|
readdcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y + z ) e. RR ) |
| 189 |
101
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
| 190 |
189 174 187
|
fovcdmd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
| 191 |
188 190
|
remulcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) x. ( y I z ) ) e. RR ) |
| 192 |
191
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
| 193 |
149
|
ssdifd |
|- ( ( ph /\ z e. ran G ) -> ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) C_ ( RR \ ran F ) ) |
| 194 |
193
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) ) -> y e. ( RR \ ran F ) ) |
| 195 |
|
eldifi |
|- ( y e. ( RR \ ran F ) -> y e. RR ) |
| 196 |
195
|
ad2antrl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> y e. RR ) |
| 197 |
60
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> z e. RR ) |
| 198 |
|
simprr |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. ( y = 0 /\ z = 0 ) ) |
| 199 |
1 2 3
|
itg1addlem3 |
|- ( ( ( y e. RR /\ z e. RR ) /\ -. ( y = 0 /\ z = 0 ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 200 |
196 197 198 199
|
syl21anc |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 201 |
|
inss1 |
|- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) |
| 202 |
|
eldifn |
|- ( y e. ( RR \ ran F ) -> -. y e. ran F ) |
| 203 |
202
|
ad2antrl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. y e. ran F ) |
| 204 |
|
vex |
|- v e. _V |
| 205 |
204
|
eliniseg |
|- ( y e. _V -> ( v e. ( `' F " { y } ) <-> v F y ) ) |
| 206 |
205
|
elv |
|- ( v e. ( `' F " { y } ) <-> v F y ) |
| 207 |
|
vex |
|- y e. _V |
| 208 |
204 207
|
brelrn |
|- ( v F y -> y e. ran F ) |
| 209 |
206 208
|
sylbi |
|- ( v e. ( `' F " { y } ) -> y e. ran F ) |
| 210 |
203 209
|
nsyl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. v e. ( `' F " { y } ) ) |
| 211 |
210
|
pm2.21d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( v e. ( `' F " { y } ) -> v e. (/) ) ) |
| 212 |
211
|
ssrdv |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( `' F " { y } ) C_ (/) ) |
| 213 |
201 212
|
sstrid |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ (/) ) |
| 214 |
|
ss0 |
|- ( ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ (/) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = (/) ) |
| 215 |
213 214
|
syl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = (/) ) |
| 216 |
215
|
fveq2d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = ( vol ` (/) ) ) |
| 217 |
|
0mbl |
|- (/) e. dom vol |
| 218 |
|
mblvol |
|- ( (/) e. dom vol -> ( vol ` (/) ) = ( vol* ` (/) ) ) |
| 219 |
217 218
|
ax-mp |
|- ( vol ` (/) ) = ( vol* ` (/) ) |
| 220 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
| 221 |
219 220
|
eqtri |
|- ( vol ` (/) ) = 0 |
| 222 |
216 221
|
eqtrdi |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = 0 ) |
| 223 |
200 222
|
eqtrd |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y I z ) = 0 ) |
| 224 |
223
|
oveq2d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. ( y I z ) ) = ( ( y + z ) x. 0 ) ) |
| 225 |
196 197
|
readdcld |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y + z ) e. RR ) |
| 226 |
225
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y + z ) e. CC ) |
| 227 |
226
|
mul01d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. 0 ) = 0 ) |
| 228 |
224 227
|
eqtrd |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
| 229 |
228
|
expr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( RR \ ran F ) ) -> ( -. ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) ) |
| 230 |
|
oveq12 |
|- ( ( y = 0 /\ z = 0 ) -> ( y + z ) = ( 0 + 0 ) ) |
| 231 |
230 95
|
eqtrdi |
|- ( ( y = 0 /\ z = 0 ) -> ( y + z ) = 0 ) |
| 232 |
|
oveq12 |
|- ( ( y = 0 /\ z = 0 ) -> ( y I z ) = ( 0 I 0 ) ) |
| 233 |
|
0re |
|- 0 e. RR |
| 234 |
|
iftrue |
|- ( ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = 0 ) |
| 235 |
|
c0ex |
|- 0 e. _V |
| 236 |
234 3 235
|
ovmpoa |
|- ( ( 0 e. RR /\ 0 e. RR ) -> ( 0 I 0 ) = 0 ) |
| 237 |
233 233 236
|
mp2an |
|- ( 0 I 0 ) = 0 |
| 238 |
232 237
|
eqtrdi |
|- ( ( y = 0 /\ z = 0 ) -> ( y I z ) = 0 ) |
| 239 |
231 238
|
oveq12d |
|- ( ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = ( 0 x. 0 ) ) |
| 240 |
|
0cn |
|- 0 e. CC |
| 241 |
240
|
mul01i |
|- ( 0 x. 0 ) = 0 |
| 242 |
239 241
|
eqtrdi |
|- ( ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
| 243 |
229 242
|
pm2.61d2 |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( RR \ ran F ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
| 244 |
194 243
|
syldan |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
| 245 |
|
f1ofo |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) -> ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
| 246 |
141 245
|
syl |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
| 247 |
|
fofi |
|- ( ( ran P e. Fin /\ ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) -> ran ( v e. ran P |-> ( v - z ) ) e. Fin ) |
| 248 |
124 246 247
|
syl2anc |
|- ( ( ph /\ z e. ran G ) -> ran ( v e. ran P |-> ( v - z ) ) e. Fin ) |
| 249 |
186 192 244 248
|
fsumss |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) ) |
| 250 |
20
|
a1i |
|- ( ( ph /\ z e. ran G ) -> ( ran P \ { 0 } ) C_ ran P ) |
| 251 |
117
|
an32s |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
| 252 |
|
dfin4 |
|- ( ran P i^i { 0 } ) = ( ran P \ ( ran P \ { 0 } ) ) |
| 253 |
|
inss2 |
|- ( ran P i^i { 0 } ) C_ { 0 } |
| 254 |
252 253
|
eqsstrri |
|- ( ran P \ ( ran P \ { 0 } ) ) C_ { 0 } |
| 255 |
254
|
sseli |
|- ( w e. ( ran P \ ( ran P \ { 0 } ) ) -> w e. { 0 } ) |
| 256 |
|
elsni |
|- ( w e. { 0 } -> w = 0 ) |
| 257 |
256
|
adantl |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> w = 0 ) |
| 258 |
257
|
oveq1d |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w x. ( ( w - z ) I z ) ) = ( 0 x. ( ( w - z ) I z ) ) ) |
| 259 |
101
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> I : ( RR X. RR ) --> RR ) |
| 260 |
257 233
|
eqeltrdi |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> w e. RR ) |
| 261 |
60
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> z e. RR ) |
| 262 |
260 261
|
resubcld |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w - z ) e. RR ) |
| 263 |
259 262 261
|
fovcdmd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( ( w - z ) I z ) e. RR ) |
| 264 |
263
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( ( w - z ) I z ) e. CC ) |
| 265 |
264
|
mul02d |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( 0 x. ( ( w - z ) I z ) ) = 0 ) |
| 266 |
258 265
|
eqtrd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w x. ( ( w - z ) I z ) ) = 0 ) |
| 267 |
255 266
|
sylan2 |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ( ran P \ ( ran P \ { 0 } ) ) ) -> ( w x. ( ( w - z ) I z ) ) = 0 ) |
| 268 |
250 251 267 124
|
fsumss |
|- ( ( ph /\ z e. ran G ) -> sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
| 269 |
164 249 268
|
3eqtr4d |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
| 270 |
269
|
sumeq2dv |
|- ( ph -> sum_ z e. ran G sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
| 271 |
192
|
anasss |
|- ( ( ph /\ ( z e. ran G /\ y e. ran F ) ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
| 272 |
12 10 271
|
fsumcom |
|- ( ph -> sum_ z e. ran G sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |
| 273 |
120 270 272
|
3eqtr2d |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |