Step |
Hyp |
Ref |
Expression |
1 |
|
i1fadd.1 |
|- ( ph -> F e. dom S.1 ) |
2 |
|
i1fadd.2 |
|- ( ph -> G e. dom S.1 ) |
3 |
|
itg1add.3 |
|- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
4 |
|
itg1add.4 |
|- P = ( + |` ( ran F X. ran G ) ) |
5 |
1 2
|
i1fadd |
|- ( ph -> ( F oF + G ) e. dom S.1 ) |
6 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
7 |
1 6
|
syl |
|- ( ph -> ran F e. Fin ) |
8 |
|
i1frn |
|- ( G e. dom S.1 -> ran G e. Fin ) |
9 |
2 8
|
syl |
|- ( ph -> ran G e. Fin ) |
10 |
|
xpfi |
|- ( ( ran F e. Fin /\ ran G e. Fin ) -> ( ran F X. ran G ) e. Fin ) |
11 |
7 9 10
|
syl2anc |
|- ( ph -> ( ran F X. ran G ) e. Fin ) |
12 |
|
ax-addf |
|- + : ( CC X. CC ) --> CC |
13 |
|
ffn |
|- ( + : ( CC X. CC ) --> CC -> + Fn ( CC X. CC ) ) |
14 |
12 13
|
ax-mp |
|- + Fn ( CC X. CC ) |
15 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
16 |
1 15
|
syl |
|- ( ph -> F : RR --> RR ) |
17 |
16
|
frnd |
|- ( ph -> ran F C_ RR ) |
18 |
|
ax-resscn |
|- RR C_ CC |
19 |
17 18
|
sstrdi |
|- ( ph -> ran F C_ CC ) |
20 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
21 |
2 20
|
syl |
|- ( ph -> G : RR --> RR ) |
22 |
21
|
frnd |
|- ( ph -> ran G C_ RR ) |
23 |
22 18
|
sstrdi |
|- ( ph -> ran G C_ CC ) |
24 |
|
xpss12 |
|- ( ( ran F C_ CC /\ ran G C_ CC ) -> ( ran F X. ran G ) C_ ( CC X. CC ) ) |
25 |
19 23 24
|
syl2anc |
|- ( ph -> ( ran F X. ran G ) C_ ( CC X. CC ) ) |
26 |
|
fnssres |
|- ( ( + Fn ( CC X. CC ) /\ ( ran F X. ran G ) C_ ( CC X. CC ) ) -> ( + |` ( ran F X. ran G ) ) Fn ( ran F X. ran G ) ) |
27 |
14 25 26
|
sylancr |
|- ( ph -> ( + |` ( ran F X. ran G ) ) Fn ( ran F X. ran G ) ) |
28 |
4
|
fneq1i |
|- ( P Fn ( ran F X. ran G ) <-> ( + |` ( ran F X. ran G ) ) Fn ( ran F X. ran G ) ) |
29 |
27 28
|
sylibr |
|- ( ph -> P Fn ( ran F X. ran G ) ) |
30 |
|
dffn4 |
|- ( P Fn ( ran F X. ran G ) <-> P : ( ran F X. ran G ) -onto-> ran P ) |
31 |
29 30
|
sylib |
|- ( ph -> P : ( ran F X. ran G ) -onto-> ran P ) |
32 |
|
fofi |
|- ( ( ( ran F X. ran G ) e. Fin /\ P : ( ran F X. ran G ) -onto-> ran P ) -> ran P e. Fin ) |
33 |
11 31 32
|
syl2anc |
|- ( ph -> ran P e. Fin ) |
34 |
|
difss |
|- ( ran P \ { 0 } ) C_ ran P |
35 |
|
ssfi |
|- ( ( ran P e. Fin /\ ( ran P \ { 0 } ) C_ ran P ) -> ( ran P \ { 0 } ) e. Fin ) |
36 |
33 34 35
|
sylancl |
|- ( ph -> ( ran P \ { 0 } ) e. Fin ) |
37 |
|
ffun |
|- ( + : ( CC X. CC ) --> CC -> Fun + ) |
38 |
12 37
|
ax-mp |
|- Fun + |
39 |
12
|
fdmi |
|- dom + = ( CC X. CC ) |
40 |
25 39
|
sseqtrrdi |
|- ( ph -> ( ran F X. ran G ) C_ dom + ) |
41 |
|
funfvima2 |
|- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( <. x , y >. e. ( ran F X. ran G ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
42 |
38 40 41
|
sylancr |
|- ( ph -> ( <. x , y >. e. ( ran F X. ran G ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
43 |
|
opelxpi |
|- ( ( x e. ran F /\ y e. ran G ) -> <. x , y >. e. ( ran F X. ran G ) ) |
44 |
42 43
|
impel |
|- ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( + ` <. x , y >. ) e. ( + " ( ran F X. ran G ) ) ) |
45 |
|
df-ov |
|- ( x + y ) = ( + ` <. x , y >. ) |
46 |
4
|
rneqi |
|- ran P = ran ( + |` ( ran F X. ran G ) ) |
47 |
|
df-ima |
|- ( + " ( ran F X. ran G ) ) = ran ( + |` ( ran F X. ran G ) ) |
48 |
46 47
|
eqtr4i |
|- ran P = ( + " ( ran F X. ran G ) ) |
49 |
44 45 48
|
3eltr4g |
|- ( ( ph /\ ( x e. ran F /\ y e. ran G ) ) -> ( x + y ) e. ran P ) |
50 |
16
|
ffnd |
|- ( ph -> F Fn RR ) |
51 |
|
dffn3 |
|- ( F Fn RR <-> F : RR --> ran F ) |
52 |
50 51
|
sylib |
|- ( ph -> F : RR --> ran F ) |
53 |
21
|
ffnd |
|- ( ph -> G Fn RR ) |
54 |
|
dffn3 |
|- ( G Fn RR <-> G : RR --> ran G ) |
55 |
53 54
|
sylib |
|- ( ph -> G : RR --> ran G ) |
56 |
|
reex |
|- RR e. _V |
57 |
56
|
a1i |
|- ( ph -> RR e. _V ) |
58 |
|
inidm |
|- ( RR i^i RR ) = RR |
59 |
49 52 55 57 57 58
|
off |
|- ( ph -> ( F oF + G ) : RR --> ran P ) |
60 |
59
|
frnd |
|- ( ph -> ran ( F oF + G ) C_ ran P ) |
61 |
60
|
ssdifd |
|- ( ph -> ( ran ( F oF + G ) \ { 0 } ) C_ ( ran P \ { 0 } ) ) |
62 |
17
|
sselda |
|- ( ( ph /\ y e. ran F ) -> y e. RR ) |
63 |
22
|
sselda |
|- ( ( ph /\ z e. ran G ) -> z e. RR ) |
64 |
62 63
|
anim12dan |
|- ( ( ph /\ ( y e. ran F /\ z e. ran G ) ) -> ( y e. RR /\ z e. RR ) ) |
65 |
|
readdcl |
|- ( ( y e. RR /\ z e. RR ) -> ( y + z ) e. RR ) |
66 |
64 65
|
syl |
|- ( ( ph /\ ( y e. ran F /\ z e. ran G ) ) -> ( y + z ) e. RR ) |
67 |
66
|
ralrimivva |
|- ( ph -> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) |
68 |
|
funimassov |
|- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( ( + " ( ran F X. ran G ) ) C_ RR <-> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) ) |
69 |
38 40 68
|
sylancr |
|- ( ph -> ( ( + " ( ran F X. ran G ) ) C_ RR <-> A. y e. ran F A. z e. ran G ( y + z ) e. RR ) ) |
70 |
67 69
|
mpbird |
|- ( ph -> ( + " ( ran F X. ran G ) ) C_ RR ) |
71 |
48 70
|
eqsstrid |
|- ( ph -> ran P C_ RR ) |
72 |
71
|
ssdifd |
|- ( ph -> ( ran P \ { 0 } ) C_ ( RR \ { 0 } ) ) |
73 |
|
itg1val2 |
|- ( ( ( F oF + G ) e. dom S.1 /\ ( ( ran P \ { 0 } ) e. Fin /\ ( ran ( F oF + G ) \ { 0 } ) C_ ( ran P \ { 0 } ) /\ ( ran P \ { 0 } ) C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` ( F oF + G ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) ) |
74 |
5 36 61 72 73
|
syl13anc |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) ) |
75 |
21
|
adantr |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> G : RR --> RR ) |
76 |
9
|
adantr |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ran G e. Fin ) |
77 |
|
inss2 |
|- ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) |
78 |
77
|
a1i |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) ) |
79 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { ( w - z ) } ) e. dom vol ) |
80 |
1 79
|
syl |
|- ( ph -> ( `' F " { ( w - z ) } ) e. dom vol ) |
81 |
|
i1fima |
|- ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) |
82 |
2 81
|
syl |
|- ( ph -> ( `' G " { z } ) e. dom vol ) |
83 |
|
inmbl |
|- ( ( ( `' F " { ( w - z ) } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
84 |
80 82 83
|
syl2anc |
|- ( ph -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
85 |
84
|
ad2antrr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) e. dom vol ) |
86 |
34 71
|
sstrid |
|- ( ph -> ( ran P \ { 0 } ) C_ RR ) |
87 |
86
|
sselda |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> w e. RR ) |
88 |
87
|
adantr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w e. RR ) |
89 |
63
|
adantlr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> z e. RR ) |
90 |
88 89
|
resubcld |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( w - z ) e. RR ) |
91 |
88
|
recnd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w e. CC ) |
92 |
89
|
recnd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> z e. CC ) |
93 |
91 92
|
npcand |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) + z ) = w ) |
94 |
|
eldifsni |
|- ( w e. ( ran P \ { 0 } ) -> w =/= 0 ) |
95 |
94
|
ad2antlr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> w =/= 0 ) |
96 |
93 95
|
eqnetrd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) + z ) =/= 0 ) |
97 |
|
oveq12 |
|- ( ( ( w - z ) = 0 /\ z = 0 ) -> ( ( w - z ) + z ) = ( 0 + 0 ) ) |
98 |
|
00id |
|- ( 0 + 0 ) = 0 |
99 |
97 98
|
eqtrdi |
|- ( ( ( w - z ) = 0 /\ z = 0 ) -> ( ( w - z ) + z ) = 0 ) |
100 |
99
|
necon3ai |
|- ( ( ( w - z ) + z ) =/= 0 -> -. ( ( w - z ) = 0 /\ z = 0 ) ) |
101 |
96 100
|
syl |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> -. ( ( w - z ) = 0 /\ z = 0 ) ) |
102 |
1 2 3
|
itg1addlem3 |
|- ( ( ( ( w - z ) e. RR /\ z e. RR ) /\ -. ( ( w - z ) = 0 /\ z = 0 ) ) -> ( ( w - z ) I z ) = ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
103 |
90 89 101 102
|
syl21anc |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) = ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
104 |
1 2 3
|
itg1addlem2 |
|- ( ph -> I : ( RR X. RR ) --> RR ) |
105 |
104
|
ad2antrr |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
106 |
105 90 89
|
fovrnd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) e. RR ) |
107 |
103 106
|
eqeltrrd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) e. RR ) |
108 |
75 76 78 85 107
|
itg1addlem1 |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) = sum_ z e. ran G ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
109 |
87
|
recnd |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> w e. CC ) |
110 |
1 2
|
i1faddlem |
|- ( ( ph /\ w e. CC ) -> ( `' ( F oF + G ) " { w } ) = U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) |
111 |
109 110
|
syldan |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( `' ( F oF + G ) " { w } ) = U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) |
112 |
111
|
fveq2d |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` ( `' ( F oF + G ) " { w } ) ) = ( vol ` U_ z e. ran G ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
113 |
103
|
sumeq2dv |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> sum_ z e. ran G ( ( w - z ) I z ) = sum_ z e. ran G ( vol ` ( ( `' F " { ( w - z ) } ) i^i ( `' G " { z } ) ) ) ) |
114 |
108 112 113
|
3eqtr4d |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( vol ` ( `' ( F oF + G ) " { w } ) ) = sum_ z e. ran G ( ( w - z ) I z ) ) |
115 |
114
|
oveq2d |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = ( w x. sum_ z e. ran G ( ( w - z ) I z ) ) ) |
116 |
106
|
recnd |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( ( w - z ) I z ) e. CC ) |
117 |
76 109 116
|
fsummulc2 |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. sum_ z e. ran G ( ( w - z ) I z ) ) = sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
118 |
115 117
|
eqtrd |
|- ( ( ph /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
119 |
118
|
sumeq2dv |
|- ( ph -> sum_ w e. ( ran P \ { 0 } ) ( w x. ( vol ` ( `' ( F oF + G ) " { w } ) ) ) = sum_ w e. ( ran P \ { 0 } ) sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) ) |
120 |
91 116
|
mulcld |
|- ( ( ( ph /\ w e. ( ran P \ { 0 } ) ) /\ z e. ran G ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
121 |
120
|
anasss |
|- ( ( ph /\ ( w e. ( ran P \ { 0 } ) /\ z e. ran G ) ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
122 |
36 9 121
|
fsumcom |
|- ( ph -> sum_ w e. ( ran P \ { 0 } ) sum_ z e. ran G ( w x. ( ( w - z ) I z ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
123 |
74 119 122
|
3eqtrd |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
124 |
|
oveq1 |
|- ( y = ( w - z ) -> ( y + z ) = ( ( w - z ) + z ) ) |
125 |
|
oveq1 |
|- ( y = ( w - z ) -> ( y I z ) = ( ( w - z ) I z ) ) |
126 |
124 125
|
oveq12d |
|- ( y = ( w - z ) -> ( ( y + z ) x. ( y I z ) ) = ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) ) |
127 |
33
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ran P e. Fin ) |
128 |
71
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ran P C_ RR ) |
129 |
128
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> v e. RR ) |
130 |
63
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> z e. RR ) |
131 |
129 130
|
resubcld |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> ( v - z ) e. RR ) |
132 |
131
|
ex |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P -> ( v - z ) e. RR ) ) |
133 |
129
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ v e. ran P ) -> v e. CC ) |
134 |
133
|
adantrr |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> v e. CC ) |
135 |
71
|
sselda |
|- ( ( ph /\ y e. ran P ) -> y e. RR ) |
136 |
135
|
ad2ant2rl |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> y e. RR ) |
137 |
136
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> y e. CC ) |
138 |
63
|
recnd |
|- ( ( ph /\ z e. ran G ) -> z e. CC ) |
139 |
138
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> z e. CC ) |
140 |
134 137 139
|
subcan2ad |
|- ( ( ( ph /\ z e. ran G ) /\ ( v e. ran P /\ y e. ran P ) ) -> ( ( v - z ) = ( y - z ) <-> v = y ) ) |
141 |
140
|
ex |
|- ( ( ph /\ z e. ran G ) -> ( ( v e. ran P /\ y e. ran P ) -> ( ( v - z ) = ( y - z ) <-> v = y ) ) ) |
142 |
132 141
|
dom2lem |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR ) |
143 |
|
f1f1orn |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
144 |
142 143
|
syl |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
145 |
|
oveq1 |
|- ( v = w -> ( v - z ) = ( w - z ) ) |
146 |
|
eqid |
|- ( v e. ran P |-> ( v - z ) ) = ( v e. ran P |-> ( v - z ) ) |
147 |
|
ovex |
|- ( w - z ) e. _V |
148 |
145 146 147
|
fvmpt |
|- ( w e. ran P -> ( ( v e. ran P |-> ( v - z ) ) ` w ) = ( w - z ) ) |
149 |
148
|
adantl |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( v e. ran P |-> ( v - z ) ) ` w ) = ( w - z ) ) |
150 |
|
f1f |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-> RR -> ( v e. ran P |-> ( v - z ) ) : ran P --> RR ) |
151 |
|
frn |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P --> RR -> ran ( v e. ran P |-> ( v - z ) ) C_ RR ) |
152 |
142 150 151
|
3syl |
|- ( ( ph /\ z e. ran G ) -> ran ( v e. ran P |-> ( v - z ) ) C_ RR ) |
153 |
152
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> y e. RR ) |
154 |
63
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> z e. RR ) |
155 |
153 154
|
readdcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( y + z ) e. RR ) |
156 |
104
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> I : ( RR X. RR ) --> RR ) |
157 |
156 153 154
|
fovrnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( y I z ) e. RR ) |
158 |
155 157
|
remulcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( ( y + z ) x. ( y I z ) ) e. RR ) |
159 |
158
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran ( v e. ran P |-> ( v - z ) ) ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
160 |
126 127 144 149 159
|
fsumf1o |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) = sum_ w e. ran P ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) ) |
161 |
128
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> w e. RR ) |
162 |
161
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> w e. CC ) |
163 |
138
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> z e. CC ) |
164 |
162 163
|
npcand |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( w - z ) + z ) = w ) |
165 |
164
|
oveq1d |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ran P ) -> ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) = ( w x. ( ( w - z ) I z ) ) ) |
166 |
165
|
sumeq2dv |
|- ( ( ph /\ z e. ran G ) -> sum_ w e. ran P ( ( ( w - z ) + z ) x. ( ( w - z ) I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
167 |
160 166
|
eqtrd |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
168 |
40
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ran F X. ran G ) C_ dom + ) |
169 |
|
simpr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. ran F ) |
170 |
|
simplr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. ran G ) |
171 |
169 170
|
opelxpd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> <. y , z >. e. ( ran F X. ran G ) ) |
172 |
|
funfvima2 |
|- ( ( Fun + /\ ( ran F X. ran G ) C_ dom + ) -> ( <. y , z >. e. ( ran F X. ran G ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
173 |
38 172
|
mpan |
|- ( ( ran F X. ran G ) C_ dom + -> ( <. y , z >. e. ( ran F X. ran G ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) ) |
174 |
168 171 173
|
sylc |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( + ` <. y , z >. ) e. ( + " ( ran F X. ran G ) ) ) |
175 |
|
df-ov |
|- ( y + z ) = ( + ` <. y , z >. ) |
176 |
174 175 48
|
3eltr4g |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y + z ) e. ran P ) |
177 |
62
|
adantlr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. RR ) |
178 |
177
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. CC ) |
179 |
138
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. CC ) |
180 |
178 179
|
pncand |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) - z ) = y ) |
181 |
180
|
eqcomd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y = ( ( y + z ) - z ) ) |
182 |
|
oveq1 |
|- ( v = ( y + z ) -> ( v - z ) = ( ( y + z ) - z ) ) |
183 |
182
|
rspceeqv |
|- ( ( ( y + z ) e. ran P /\ y = ( ( y + z ) - z ) ) -> E. v e. ran P y = ( v - z ) ) |
184 |
176 181 183
|
syl2anc |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> E. v e. ran P y = ( v - z ) ) |
185 |
184
|
ralrimiva |
|- ( ( ph /\ z e. ran G ) -> A. y e. ran F E. v e. ran P y = ( v - z ) ) |
186 |
|
ssabral |
|- ( ran F C_ { y | E. v e. ran P y = ( v - z ) } <-> A. y e. ran F E. v e. ran P y = ( v - z ) ) |
187 |
185 186
|
sylibr |
|- ( ( ph /\ z e. ran G ) -> ran F C_ { y | E. v e. ran P y = ( v - z ) } ) |
188 |
146
|
rnmpt |
|- ran ( v e. ran P |-> ( v - z ) ) = { y | E. v e. ran P y = ( v - z ) } |
189 |
187 188
|
sseqtrrdi |
|- ( ( ph /\ z e. ran G ) -> ran F C_ ran ( v e. ran P |-> ( v - z ) ) ) |
190 |
63
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. RR ) |
191 |
177 190
|
readdcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y + z ) e. RR ) |
192 |
104
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
193 |
192 177 190
|
fovrnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
194 |
191 193
|
remulcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) x. ( y I z ) ) e. RR ) |
195 |
194
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
196 |
152
|
ssdifd |
|- ( ( ph /\ z e. ran G ) -> ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) C_ ( RR \ ran F ) ) |
197 |
196
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) ) -> y e. ( RR \ ran F ) ) |
198 |
|
eldifi |
|- ( y e. ( RR \ ran F ) -> y e. RR ) |
199 |
198
|
ad2antrl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> y e. RR ) |
200 |
63
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> z e. RR ) |
201 |
|
simprr |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. ( y = 0 /\ z = 0 ) ) |
202 |
1 2 3
|
itg1addlem3 |
|- ( ( ( y e. RR /\ z e. RR ) /\ -. ( y = 0 /\ z = 0 ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
203 |
199 200 201 202
|
syl21anc |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
204 |
|
inss1 |
|- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) |
205 |
|
eldifn |
|- ( y e. ( RR \ ran F ) -> -. y e. ran F ) |
206 |
205
|
ad2antrl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. y e. ran F ) |
207 |
|
vex |
|- v e. _V |
208 |
207
|
eliniseg |
|- ( y e. _V -> ( v e. ( `' F " { y } ) <-> v F y ) ) |
209 |
208
|
elv |
|- ( v e. ( `' F " { y } ) <-> v F y ) |
210 |
|
vex |
|- y e. _V |
211 |
207 210
|
brelrn |
|- ( v F y -> y e. ran F ) |
212 |
209 211
|
sylbi |
|- ( v e. ( `' F " { y } ) -> y e. ran F ) |
213 |
206 212
|
nsyl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> -. v e. ( `' F " { y } ) ) |
214 |
213
|
pm2.21d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( v e. ( `' F " { y } ) -> v e. (/) ) ) |
215 |
214
|
ssrdv |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( `' F " { y } ) C_ (/) ) |
216 |
204 215
|
sstrid |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ (/) ) |
217 |
|
ss0 |
|- ( ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ (/) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = (/) ) |
218 |
216 217
|
syl |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = (/) ) |
219 |
218
|
fveq2d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = ( vol ` (/) ) ) |
220 |
|
0mbl |
|- (/) e. dom vol |
221 |
|
mblvol |
|- ( (/) e. dom vol -> ( vol ` (/) ) = ( vol* ` (/) ) ) |
222 |
220 221
|
ax-mp |
|- ( vol ` (/) ) = ( vol* ` (/) ) |
223 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
224 |
222 223
|
eqtri |
|- ( vol ` (/) ) = 0 |
225 |
219 224
|
eqtrdi |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = 0 ) |
226 |
203 225
|
eqtrd |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y I z ) = 0 ) |
227 |
226
|
oveq2d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. ( y I z ) ) = ( ( y + z ) x. 0 ) ) |
228 |
199 200
|
readdcld |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y + z ) e. RR ) |
229 |
228
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( y + z ) e. CC ) |
230 |
229
|
mul01d |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. 0 ) = 0 ) |
231 |
227 230
|
eqtrd |
|- ( ( ( ph /\ z e. ran G ) /\ ( y e. ( RR \ ran F ) /\ -. ( y = 0 /\ z = 0 ) ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
232 |
231
|
expr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( RR \ ran F ) ) -> ( -. ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) ) |
233 |
|
oveq12 |
|- ( ( y = 0 /\ z = 0 ) -> ( y + z ) = ( 0 + 0 ) ) |
234 |
233 98
|
eqtrdi |
|- ( ( y = 0 /\ z = 0 ) -> ( y + z ) = 0 ) |
235 |
|
oveq12 |
|- ( ( y = 0 /\ z = 0 ) -> ( y I z ) = ( 0 I 0 ) ) |
236 |
|
0re |
|- 0 e. RR |
237 |
|
iftrue |
|- ( ( i = 0 /\ j = 0 ) -> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) = 0 ) |
238 |
|
c0ex |
|- 0 e. _V |
239 |
237 3 238
|
ovmpoa |
|- ( ( 0 e. RR /\ 0 e. RR ) -> ( 0 I 0 ) = 0 ) |
240 |
236 236 239
|
mp2an |
|- ( 0 I 0 ) = 0 |
241 |
235 240
|
eqtrdi |
|- ( ( y = 0 /\ z = 0 ) -> ( y I z ) = 0 ) |
242 |
234 241
|
oveq12d |
|- ( ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = ( 0 x. 0 ) ) |
243 |
|
0cn |
|- 0 e. CC |
244 |
243
|
mul01i |
|- ( 0 x. 0 ) = 0 |
245 |
242 244
|
eqtrdi |
|- ( ( y = 0 /\ z = 0 ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
246 |
232 245
|
pm2.61d2 |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( RR \ ran F ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
247 |
197 246
|
syldan |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ( ran ( v e. ran P |-> ( v - z ) ) \ ran F ) ) -> ( ( y + z ) x. ( y I z ) ) = 0 ) |
248 |
|
f1ofo |
|- ( ( v e. ran P |-> ( v - z ) ) : ran P -1-1-onto-> ran ( v e. ran P |-> ( v - z ) ) -> ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
249 |
144 248
|
syl |
|- ( ( ph /\ z e. ran G ) -> ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) |
250 |
|
fofi |
|- ( ( ran P e. Fin /\ ( v e. ran P |-> ( v - z ) ) : ran P -onto-> ran ( v e. ran P |-> ( v - z ) ) ) -> ran ( v e. ran P |-> ( v - z ) ) e. Fin ) |
251 |
127 249 250
|
syl2anc |
|- ( ( ph /\ z e. ran G ) -> ran ( v e. ran P |-> ( v - z ) ) e. Fin ) |
252 |
189 195 247 251
|
fsumss |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran ( v e. ran P |-> ( v - z ) ) ( ( y + z ) x. ( y I z ) ) ) |
253 |
34
|
a1i |
|- ( ( ph /\ z e. ran G ) -> ( ran P \ { 0 } ) C_ ran P ) |
254 |
120
|
an32s |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ( ran P \ { 0 } ) ) -> ( w x. ( ( w - z ) I z ) ) e. CC ) |
255 |
|
dfin4 |
|- ( ran P i^i { 0 } ) = ( ran P \ ( ran P \ { 0 } ) ) |
256 |
|
inss2 |
|- ( ran P i^i { 0 } ) C_ { 0 } |
257 |
255 256
|
eqsstrri |
|- ( ran P \ ( ran P \ { 0 } ) ) C_ { 0 } |
258 |
257
|
sseli |
|- ( w e. ( ran P \ ( ran P \ { 0 } ) ) -> w e. { 0 } ) |
259 |
|
elsni |
|- ( w e. { 0 } -> w = 0 ) |
260 |
259
|
adantl |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> w = 0 ) |
261 |
260
|
oveq1d |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w x. ( ( w - z ) I z ) ) = ( 0 x. ( ( w - z ) I z ) ) ) |
262 |
104
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> I : ( RR X. RR ) --> RR ) |
263 |
260 236
|
eqeltrdi |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> w e. RR ) |
264 |
63
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> z e. RR ) |
265 |
263 264
|
resubcld |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w - z ) e. RR ) |
266 |
262 265 264
|
fovrnd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( ( w - z ) I z ) e. RR ) |
267 |
266
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( ( w - z ) I z ) e. CC ) |
268 |
267
|
mul02d |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( 0 x. ( ( w - z ) I z ) ) = 0 ) |
269 |
261 268
|
eqtrd |
|- ( ( ( ph /\ z e. ran G ) /\ w e. { 0 } ) -> ( w x. ( ( w - z ) I z ) ) = 0 ) |
270 |
258 269
|
sylan2 |
|- ( ( ( ph /\ z e. ran G ) /\ w e. ( ran P \ ( ran P \ { 0 } ) ) ) -> ( w x. ( ( w - z ) I z ) ) = 0 ) |
271 |
253 254 270 127
|
fsumss |
|- ( ( ph /\ z e. ran G ) -> sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) = sum_ w e. ran P ( w x. ( ( w - z ) I z ) ) ) |
272 |
167 252 271
|
3eqtr4d |
|- ( ( ph /\ z e. ran G ) -> sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
273 |
272
|
sumeq2dv |
|- ( ph -> sum_ z e. ran G sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ z e. ran G sum_ w e. ( ran P \ { 0 } ) ( w x. ( ( w - z ) I z ) ) ) |
274 |
195
|
anasss |
|- ( ( ph /\ ( z e. ran G /\ y e. ran F ) ) -> ( ( y + z ) x. ( y I z ) ) e. CC ) |
275 |
9 7 274
|
fsumcom |
|- ( ph -> sum_ z e. ran G sum_ y e. ran F ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |
276 |
123 273 275
|
3eqtr2d |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |