| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1fadd.1 |  |-  ( ph -> F e. dom S.1 ) | 
						
							| 2 |  | i1fadd.2 |  |-  ( ph -> G e. dom S.1 ) | 
						
							| 3 |  | itg1add.3 |  |-  I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) | 
						
							| 4 |  | itg1add.4 |  |-  P = ( + |` ( ran F X. ran G ) ) | 
						
							| 5 |  | i1frn |  |-  ( F e. dom S.1 -> ran F e. Fin ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> ran F e. Fin ) | 
						
							| 7 |  | i1frn |  |-  ( G e. dom S.1 -> ran G e. Fin ) | 
						
							| 8 | 2 7 | syl |  |-  ( ph -> ran G e. Fin ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ y e. ran F ) -> ran G e. Fin ) | 
						
							| 10 |  | i1ff |  |-  ( F e. dom S.1 -> F : RR --> RR ) | 
						
							| 11 | 1 10 | syl |  |-  ( ph -> F : RR --> RR ) | 
						
							| 12 | 11 | frnd |  |-  ( ph -> ran F C_ RR ) | 
						
							| 13 | 12 | sselda |  |-  ( ( ph /\ y e. ran F ) -> y e. RR ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> y e. RR ) | 
						
							| 15 | 14 | recnd |  |-  ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> y e. CC ) | 
						
							| 16 | 1 2 3 | itg1addlem2 |  |-  ( ph -> I : ( RR X. RR ) --> RR ) | 
						
							| 17 | 16 | ad2antrr |  |-  ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) | 
						
							| 18 |  | i1ff |  |-  ( G e. dom S.1 -> G : RR --> RR ) | 
						
							| 19 | 2 18 | syl |  |-  ( ph -> G : RR --> RR ) | 
						
							| 20 | 19 | frnd |  |-  ( ph -> ran G C_ RR ) | 
						
							| 21 | 20 | sselda |  |-  ( ( ph /\ z e. ran G ) -> z e. RR ) | 
						
							| 22 | 21 | adantlr |  |-  ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> z e. RR ) | 
						
							| 23 | 17 14 22 | fovcdmd |  |-  ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y I z ) e. RR ) | 
						
							| 24 | 23 | recnd |  |-  ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y I z ) e. CC ) | 
						
							| 25 | 15 24 | mulcld |  |-  ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y x. ( y I z ) ) e. CC ) | 
						
							| 26 | 9 25 | fsumcl |  |-  ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( y x. ( y I z ) ) e. CC ) | 
						
							| 27 | 22 | recnd |  |-  ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> z e. CC ) | 
						
							| 28 | 27 24 | mulcld |  |-  ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( z x. ( y I z ) ) e. CC ) | 
						
							| 29 | 9 28 | fsumcl |  |-  ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( z x. ( y I z ) ) e. CC ) | 
						
							| 30 | 6 26 29 | fsumadd |  |-  ( ph -> sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) = ( sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) + sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) ) | 
						
							| 31 | 1 2 3 4 | itg1addlem4 |  |-  ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) | 
						
							| 32 | 15 27 24 | adddird |  |-  ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( ( y + z ) x. ( y I z ) ) = ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) ) | 
						
							| 33 | 32 | sumeq2dv |  |-  ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = sum_ z e. ran G ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) ) | 
						
							| 34 | 9 25 28 | fsumadd |  |-  ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) = ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) | 
						
							| 35 | 33 34 | eqtrd |  |-  ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) | 
						
							| 36 | 35 | sumeq2dv |  |-  ( ph -> sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) | 
						
							| 37 | 31 36 | eqtrd |  |-  ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) | 
						
							| 38 |  | itg1val |  |-  ( F e. dom S.1 -> ( S.1 ` F ) = sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) ) | 
						
							| 39 | 1 38 | syl |  |-  ( ph -> ( S.1 ` F ) = sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) ) | 
						
							| 40 | 19 | adantr |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> G : RR --> RR ) | 
						
							| 41 | 8 | adantr |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ran G e. Fin ) | 
						
							| 42 |  | inss2 |  |-  ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) | 
						
							| 43 | 42 | a1i |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) ) | 
						
							| 44 |  | i1fima |  |-  ( F e. dom S.1 -> ( `' F " { y } ) e. dom vol ) | 
						
							| 45 | 1 44 | syl |  |-  ( ph -> ( `' F " { y } ) e. dom vol ) | 
						
							| 46 | 45 | ad2antrr |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( `' F " { y } ) e. dom vol ) | 
						
							| 47 |  | i1fima |  |-  ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) | 
						
							| 48 | 2 47 | syl |  |-  ( ph -> ( `' G " { z } ) e. dom vol ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( `' G " { z } ) e. dom vol ) | 
						
							| 50 |  | inmbl |  |-  ( ( ( `' F " { y } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) | 
						
							| 51 | 46 49 50 | syl2anc |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) | 
						
							| 52 | 12 | ssdifssd |  |-  ( ph -> ( ran F \ { 0 } ) C_ RR ) | 
						
							| 53 | 52 | sselda |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> y e. RR ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y e. RR ) | 
						
							| 55 | 20 | adantr |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ran G C_ RR ) | 
						
							| 56 | 55 | sselda |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> z e. RR ) | 
						
							| 57 |  | eldifsni |  |-  ( y e. ( ran F \ { 0 } ) -> y =/= 0 ) | 
						
							| 58 | 57 | ad2antlr |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y =/= 0 ) | 
						
							| 59 |  | simpl |  |-  ( ( y = 0 /\ z = 0 ) -> y = 0 ) | 
						
							| 60 | 59 | necon3ai |  |-  ( y =/= 0 -> -. ( y = 0 /\ z = 0 ) ) | 
						
							| 61 | 58 60 | syl |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> -. ( y = 0 /\ z = 0 ) ) | 
						
							| 62 | 1 2 3 | itg1addlem3 |  |-  ( ( ( y e. RR /\ z e. RR ) /\ -. ( y = 0 /\ z = 0 ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 63 | 54 56 61 62 | syl21anc |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 64 | 16 | ad2antrr |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) | 
						
							| 65 | 64 54 56 | fovcdmd |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) e. RR ) | 
						
							| 66 | 63 65 | eqeltrrd |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) e. RR ) | 
						
							| 67 | 40 41 43 51 66 | itg1addlem1 |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = sum_ z e. ran G ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 68 |  | iunin2 |  |-  U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) | 
						
							| 69 | 1 | adantr |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> F e. dom S.1 ) | 
						
							| 70 | 69 44 | syl |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) e. dom vol ) | 
						
							| 71 |  | mblss |  |-  ( ( `' F " { y } ) e. dom vol -> ( `' F " { y } ) C_ RR ) | 
						
							| 72 | 70 71 | syl |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) C_ RR ) | 
						
							| 73 |  | iunid |  |-  U_ z e. ran G { z } = ran G | 
						
							| 74 | 73 | imaeq2i |  |-  ( `' G " U_ z e. ran G { z } ) = ( `' G " ran G ) | 
						
							| 75 |  | imaiun |  |-  ( `' G " U_ z e. ran G { z } ) = U_ z e. ran G ( `' G " { z } ) | 
						
							| 76 |  | cnvimarndm |  |-  ( `' G " ran G ) = dom G | 
						
							| 77 | 74 75 76 | 3eqtr3i |  |-  U_ z e. ran G ( `' G " { z } ) = dom G | 
						
							| 78 | 40 | fdmd |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> dom G = RR ) | 
						
							| 79 | 77 78 | eqtrid |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> U_ z e. ran G ( `' G " { z } ) = RR ) | 
						
							| 80 | 72 79 | sseqtrrd |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) C_ U_ z e. ran G ( `' G " { z } ) ) | 
						
							| 81 |  | dfss2 |  |-  ( ( `' F " { y } ) C_ U_ z e. ran G ( `' G " { z } ) <-> ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) = ( `' F " { y } ) ) | 
						
							| 82 | 80 81 | sylib |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) = ( `' F " { y } ) ) | 
						
							| 83 | 68 82 | eqtr2id |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) = U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) | 
						
							| 84 | 83 | fveq2d |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) = ( vol ` U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 85 | 63 | sumeq2dv |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> sum_ z e. ran G ( y I z ) = sum_ z e. ran G ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 86 | 67 84 85 | 3eqtr4d |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) = sum_ z e. ran G ( y I z ) ) | 
						
							| 87 | 86 | oveq2d |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. ( vol ` ( `' F " { y } ) ) ) = ( y x. sum_ z e. ran G ( y I z ) ) ) | 
						
							| 88 | 53 | recnd |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> y e. CC ) | 
						
							| 89 | 65 | recnd |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) e. CC ) | 
						
							| 90 | 41 88 89 | fsummulc2 |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. sum_ z e. ran G ( y I z ) ) = sum_ z e. ran G ( y x. ( y I z ) ) ) | 
						
							| 91 | 87 90 | eqtrd |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. ( vol ` ( `' F " { y } ) ) ) = sum_ z e. ran G ( y x. ( y I z ) ) ) | 
						
							| 92 | 91 | sumeq2dv |  |-  ( ph -> sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) = sum_ y e. ( ran F \ { 0 } ) sum_ z e. ran G ( y x. ( y I z ) ) ) | 
						
							| 93 |  | difssd |  |-  ( ph -> ( ran F \ { 0 } ) C_ ran F ) | 
						
							| 94 | 54 | recnd |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y e. CC ) | 
						
							| 95 | 94 89 | mulcld |  |-  ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y x. ( y I z ) ) e. CC ) | 
						
							| 96 | 41 95 | fsumcl |  |-  ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> sum_ z e. ran G ( y x. ( y I z ) ) e. CC ) | 
						
							| 97 |  | dfin4 |  |-  ( ran F i^i { 0 } ) = ( ran F \ ( ran F \ { 0 } ) ) | 
						
							| 98 |  | inss2 |  |-  ( ran F i^i { 0 } ) C_ { 0 } | 
						
							| 99 | 97 98 | eqsstrri |  |-  ( ran F \ ( ran F \ { 0 } ) ) C_ { 0 } | 
						
							| 100 | 99 | sseli |  |-  ( y e. ( ran F \ ( ran F \ { 0 } ) ) -> y e. { 0 } ) | 
						
							| 101 |  | elsni |  |-  ( y e. { 0 } -> y = 0 ) | 
						
							| 102 | 101 | ad2antlr |  |-  ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> y = 0 ) | 
						
							| 103 | 102 | oveq1d |  |-  ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y x. ( y I z ) ) = ( 0 x. ( y I z ) ) ) | 
						
							| 104 | 16 | ad2antrr |  |-  ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) | 
						
							| 105 |  | 0re |  |-  0 e. RR | 
						
							| 106 | 102 105 | eqeltrdi |  |-  ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> y e. RR ) | 
						
							| 107 | 21 | adantlr |  |-  ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> z e. RR ) | 
						
							| 108 | 104 106 107 | fovcdmd |  |-  ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y I z ) e. RR ) | 
						
							| 109 | 108 | recnd |  |-  ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y I z ) e. CC ) | 
						
							| 110 | 109 | mul02d |  |-  ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( 0 x. ( y I z ) ) = 0 ) | 
						
							| 111 | 103 110 | eqtrd |  |-  ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y x. ( y I z ) ) = 0 ) | 
						
							| 112 | 111 | sumeq2dv |  |-  ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G ( y x. ( y I z ) ) = sum_ z e. ran G 0 ) | 
						
							| 113 | 8 | adantr |  |-  ( ( ph /\ y e. { 0 } ) -> ran G e. Fin ) | 
						
							| 114 | 113 | olcd |  |-  ( ( ph /\ y e. { 0 } ) -> ( ran G C_ ( ZZ>= ` 0 ) \/ ran G e. Fin ) ) | 
						
							| 115 |  | sumz |  |-  ( ( ran G C_ ( ZZ>= ` 0 ) \/ ran G e. Fin ) -> sum_ z e. ran G 0 = 0 ) | 
						
							| 116 | 114 115 | syl |  |-  ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G 0 = 0 ) | 
						
							| 117 | 112 116 | eqtrd |  |-  ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G ( y x. ( y I z ) ) = 0 ) | 
						
							| 118 | 100 117 | sylan2 |  |-  ( ( ph /\ y e. ( ran F \ ( ran F \ { 0 } ) ) ) -> sum_ z e. ran G ( y x. ( y I z ) ) = 0 ) | 
						
							| 119 | 93 96 118 6 | fsumss |  |-  ( ph -> sum_ y e. ( ran F \ { 0 } ) sum_ z e. ran G ( y x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) ) | 
						
							| 120 | 39 92 119 | 3eqtrd |  |-  ( ph -> ( S.1 ` F ) = sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) ) | 
						
							| 121 |  | itg1val |  |-  ( G e. dom S.1 -> ( S.1 ` G ) = sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) ) | 
						
							| 122 | 2 121 | syl |  |-  ( ph -> ( S.1 ` G ) = sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) ) | 
						
							| 123 | 11 | adantr |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> F : RR --> RR ) | 
						
							| 124 | 6 | adantr |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ran F e. Fin ) | 
						
							| 125 |  | inss1 |  |-  ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) | 
						
							| 126 | 125 | a1i |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) ) | 
						
							| 127 | 45 | ad2antrr |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( `' F " { y } ) e. dom vol ) | 
						
							| 128 | 48 | ad2antrr |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( `' G " { z } ) e. dom vol ) | 
						
							| 129 | 127 128 50 | syl2anc |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) | 
						
							| 130 | 12 | adantr |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ran F C_ RR ) | 
						
							| 131 | 130 | sselda |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> y e. RR ) | 
						
							| 132 | 20 | ssdifssd |  |-  ( ph -> ( ran G \ { 0 } ) C_ RR ) | 
						
							| 133 | 132 | sselda |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> z e. RR ) | 
						
							| 134 | 133 | adantr |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z e. RR ) | 
						
							| 135 |  | eldifsni |  |-  ( z e. ( ran G \ { 0 } ) -> z =/= 0 ) | 
						
							| 136 | 135 | ad2antlr |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z =/= 0 ) | 
						
							| 137 |  | simpr |  |-  ( ( y = 0 /\ z = 0 ) -> z = 0 ) | 
						
							| 138 | 137 | necon3ai |  |-  ( z =/= 0 -> -. ( y = 0 /\ z = 0 ) ) | 
						
							| 139 | 136 138 | syl |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> -. ( y = 0 /\ z = 0 ) ) | 
						
							| 140 | 131 134 139 62 | syl21anc |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 141 | 16 | ad2antrr |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) | 
						
							| 142 | 141 131 134 | fovcdmd |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) e. RR ) | 
						
							| 143 | 140 142 | eqeltrrd |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) e. RR ) | 
						
							| 144 | 123 124 126 129 143 | itg1addlem1 |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = sum_ y e. ran F ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 145 |  | incom |  |-  ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i ( `' F " { y } ) ) | 
						
							| 146 | 145 | a1i |  |-  ( y e. ran F -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i ( `' F " { y } ) ) ) | 
						
							| 147 | 146 | iuneq2i |  |-  U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = U_ y e. ran F ( ( `' G " { z } ) i^i ( `' F " { y } ) ) | 
						
							| 148 |  | iunin2 |  |-  U_ y e. ran F ( ( `' G " { z } ) i^i ( `' F " { y } ) ) = ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) | 
						
							| 149 | 147 148 | eqtri |  |-  U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) | 
						
							| 150 |  | cnvimass |  |-  ( `' G " { z } ) C_ dom G | 
						
							| 151 | 19 | fdmd |  |-  ( ph -> dom G = RR ) | 
						
							| 152 | 151 | adantr |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> dom G = RR ) | 
						
							| 153 | 150 152 | sseqtrid |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ RR ) | 
						
							| 154 |  | iunid |  |-  U_ y e. ran F { y } = ran F | 
						
							| 155 | 154 | imaeq2i |  |-  ( `' F " U_ y e. ran F { y } ) = ( `' F " ran F ) | 
						
							| 156 |  | imaiun |  |-  ( `' F " U_ y e. ran F { y } ) = U_ y e. ran F ( `' F " { y } ) | 
						
							| 157 |  | cnvimarndm |  |-  ( `' F " ran F ) = dom F | 
						
							| 158 | 155 156 157 | 3eqtr3i |  |-  U_ y e. ran F ( `' F " { y } ) = dom F | 
						
							| 159 | 11 | fdmd |  |-  ( ph -> dom F = RR ) | 
						
							| 160 | 159 | adantr |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> dom F = RR ) | 
						
							| 161 | 158 160 | eqtrid |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> U_ y e. ran F ( `' F " { y } ) = RR ) | 
						
							| 162 | 153 161 | sseqtrrd |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ U_ y e. ran F ( `' F " { y } ) ) | 
						
							| 163 |  | dfss2 |  |-  ( ( `' G " { z } ) C_ U_ y e. ran F ( `' F " { y } ) <-> ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) = ( `' G " { z } ) ) | 
						
							| 164 | 162 163 | sylib |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) = ( `' G " { z } ) ) | 
						
							| 165 | 149 164 | eqtr2id |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) = U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) | 
						
							| 166 | 165 | fveq2d |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = ( vol ` U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 167 | 140 | sumeq2dv |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> sum_ y e. ran F ( y I z ) = sum_ y e. ran F ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) | 
						
							| 168 | 144 166 167 | 3eqtr4d |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = sum_ y e. ran F ( y I z ) ) | 
						
							| 169 | 168 | oveq2d |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. ( vol ` ( `' G " { z } ) ) ) = ( z x. sum_ y e. ran F ( y I z ) ) ) | 
						
							| 170 | 133 | recnd |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> z e. CC ) | 
						
							| 171 | 142 | recnd |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) e. CC ) | 
						
							| 172 | 124 170 171 | fsummulc2 |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. sum_ y e. ran F ( y I z ) ) = sum_ y e. ran F ( z x. ( y I z ) ) ) | 
						
							| 173 | 169 172 | eqtrd |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. ( vol ` ( `' G " { z } ) ) ) = sum_ y e. ran F ( z x. ( y I z ) ) ) | 
						
							| 174 | 173 | sumeq2dv |  |-  ( ph -> sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) = sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) ) | 
						
							| 175 |  | difssd |  |-  ( ph -> ( ran G \ { 0 } ) C_ ran G ) | 
						
							| 176 | 170 | adantr |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z e. CC ) | 
						
							| 177 | 176 171 | mulcld |  |-  ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( z x. ( y I z ) ) e. CC ) | 
						
							| 178 | 124 177 | fsumcl |  |-  ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> sum_ y e. ran F ( z x. ( y I z ) ) e. CC ) | 
						
							| 179 |  | dfin4 |  |-  ( ran G i^i { 0 } ) = ( ran G \ ( ran G \ { 0 } ) ) | 
						
							| 180 |  | inss2 |  |-  ( ran G i^i { 0 } ) C_ { 0 } | 
						
							| 181 | 179 180 | eqsstrri |  |-  ( ran G \ ( ran G \ { 0 } ) ) C_ { 0 } | 
						
							| 182 | 181 | sseli |  |-  ( z e. ( ran G \ ( ran G \ { 0 } ) ) -> z e. { 0 } ) | 
						
							| 183 |  | elsni |  |-  ( z e. { 0 } -> z = 0 ) | 
						
							| 184 | 183 | ad2antlr |  |-  ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> z = 0 ) | 
						
							| 185 | 184 | oveq1d |  |-  ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( z x. ( y I z ) ) = ( 0 x. ( y I z ) ) ) | 
						
							| 186 | 16 | ad2antrr |  |-  ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) | 
						
							| 187 | 13 | adantlr |  |-  ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> y e. RR ) | 
						
							| 188 | 184 105 | eqeltrdi |  |-  ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> z e. RR ) | 
						
							| 189 | 186 187 188 | fovcdmd |  |-  ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( y I z ) e. RR ) | 
						
							| 190 | 189 | recnd |  |-  ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( y I z ) e. CC ) | 
						
							| 191 | 190 | mul02d |  |-  ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( 0 x. ( y I z ) ) = 0 ) | 
						
							| 192 | 185 191 | eqtrd |  |-  ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( z x. ( y I z ) ) = 0 ) | 
						
							| 193 | 192 | sumeq2dv |  |-  ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F 0 ) | 
						
							| 194 | 6 | adantr |  |-  ( ( ph /\ z e. { 0 } ) -> ran F e. Fin ) | 
						
							| 195 | 194 | olcd |  |-  ( ( ph /\ z e. { 0 } ) -> ( ran F C_ ( ZZ>= ` 0 ) \/ ran F e. Fin ) ) | 
						
							| 196 |  | sumz |  |-  ( ( ran F C_ ( ZZ>= ` 0 ) \/ ran F e. Fin ) -> sum_ y e. ran F 0 = 0 ) | 
						
							| 197 | 195 196 | syl |  |-  ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F 0 = 0 ) | 
						
							| 198 | 193 197 | eqtrd |  |-  ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F ( z x. ( y I z ) ) = 0 ) | 
						
							| 199 | 182 198 | sylan2 |  |-  ( ( ph /\ z e. ( ran G \ ( ran G \ { 0 } ) ) ) -> sum_ y e. ran F ( z x. ( y I z ) ) = 0 ) | 
						
							| 200 | 175 178 199 8 | fsumss |  |-  ( ph -> sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) = sum_ z e. ran G sum_ y e. ran F ( z x. ( y I z ) ) ) | 
						
							| 201 | 21 | adantr |  |-  ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. RR ) | 
						
							| 202 | 201 | recnd |  |-  ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. CC ) | 
						
							| 203 | 16 | ad2antrr |  |-  ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) | 
						
							| 204 | 12 | adantr |  |-  ( ( ph /\ z e. ran G ) -> ran F C_ RR ) | 
						
							| 205 | 204 | sselda |  |-  ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. RR ) | 
						
							| 206 | 203 205 201 | fovcdmd |  |-  ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. RR ) | 
						
							| 207 | 206 | recnd |  |-  ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. CC ) | 
						
							| 208 | 202 207 | mulcld |  |-  ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( z x. ( y I z ) ) e. CC ) | 
						
							| 209 | 208 | anasss |  |-  ( ( ph /\ ( z e. ran G /\ y e. ran F ) ) -> ( z x. ( y I z ) ) e. CC ) | 
						
							| 210 | 8 6 209 | fsumcom |  |-  ( ph -> sum_ z e. ran G sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) | 
						
							| 211 | 200 210 | eqtrd |  |-  ( ph -> sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) | 
						
							| 212 | 122 174 211 | 3eqtrd |  |-  ( ph -> ( S.1 ` G ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) | 
						
							| 213 | 120 212 | oveq12d |  |-  ( ph -> ( ( S.1 ` F ) + ( S.1 ` G ) ) = ( sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) + sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) ) | 
						
							| 214 | 30 37 213 | 3eqtr4d |  |-  ( ph -> ( S.1 ` ( F oF + G ) ) = ( ( S.1 ` F ) + ( S.1 ` G ) ) ) |