| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg1climres.1 |  |-  ( ph -> A : NN --> dom vol ) | 
						
							| 2 |  | itg1climres.2 |  |-  ( ( ph /\ n e. NN ) -> ( A ` n ) C_ ( A ` ( n + 1 ) ) ) | 
						
							| 3 |  | itg1climres.3 |  |-  ( ph -> U. ran A = RR ) | 
						
							| 4 |  | itg1climres.4 |  |-  ( ph -> F e. dom S.1 ) | 
						
							| 5 |  | itg1climres.5 |  |-  G = ( x e. RR |-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) | 
						
							| 6 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 7 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 8 |  | i1frn |  |-  ( F e. dom S.1 -> ran F e. Fin ) | 
						
							| 9 | 4 8 | syl |  |-  ( ph -> ran F e. Fin ) | 
						
							| 10 |  | difss |  |-  ( ran F \ { 0 } ) C_ ran F | 
						
							| 11 |  | ssfi |  |-  ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) | 
						
							| 12 | 9 10 11 | sylancl |  |-  ( ph -> ( ran F \ { 0 } ) e. Fin ) | 
						
							| 13 |  | 1zzd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 1 e. ZZ ) | 
						
							| 14 |  | i1fima |  |-  ( F e. dom S.1 -> ( `' F " { k } ) e. dom vol ) | 
						
							| 15 | 4 14 | syl |  |-  ( ph -> ( `' F " { k } ) e. dom vol ) | 
						
							| 16 | 15 | ad2antrr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( `' F " { k } ) e. dom vol ) | 
						
							| 17 | 1 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( A ` n ) e. dom vol ) | 
						
							| 18 | 17 | adantlr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` n ) e. dom vol ) | 
						
							| 19 |  | inmbl |  |-  ( ( ( `' F " { k } ) e. dom vol /\ ( A ` n ) e. dom vol ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol ) | 
						
							| 20 | 16 18 19 | syl2anc |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol ) | 
						
							| 21 |  | mblvol |  |-  ( ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) | 
						
							| 23 |  | inss1 |  |-  ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) | 
						
							| 24 | 23 | a1i |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) ) | 
						
							| 25 |  | mblss |  |-  ( ( `' F " { k } ) e. dom vol -> ( `' F " { k } ) C_ RR ) | 
						
							| 26 | 16 25 | syl |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( `' F " { k } ) C_ RR ) | 
						
							| 27 |  | mblvol |  |-  ( ( `' F " { k } ) e. dom vol -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) | 
						
							| 28 | 16 27 | syl |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) | 
						
							| 29 |  | i1fima2sn |  |-  ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) | 
						
							| 30 | 4 29 | sylan |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( `' F " { k } ) ) e. RR ) | 
						
							| 32 | 28 31 | eqeltrrd |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( `' F " { k } ) ) e. RR ) | 
						
							| 33 |  | ovolsscl |  |-  ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) /\ ( `' F " { k } ) C_ RR /\ ( vol* ` ( `' F " { k } ) ) e. RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) | 
						
							| 34 | 24 26 32 33 | syl3anc |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) | 
						
							| 35 | 22 34 | eqeltrd |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) | 
						
							| 36 | 35 | fmpttd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) : NN --> RR ) | 
						
							| 37 | 2 | adantlr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` n ) C_ ( A ` ( n + 1 ) ) ) | 
						
							| 38 |  | sslin |  |-  ( ( A ` n ) C_ ( A ` ( n + 1 ) ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) | 
						
							| 40 | 1 | adantr |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A : NN --> dom vol ) | 
						
							| 41 |  | peano2nn |  |-  ( n e. NN -> ( n + 1 ) e. NN ) | 
						
							| 42 |  | ffvelcdm |  |-  ( ( A : NN --> dom vol /\ ( n + 1 ) e. NN ) -> ( A ` ( n + 1 ) ) e. dom vol ) | 
						
							| 43 | 40 41 42 | syl2an |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` ( n + 1 ) ) e. dom vol ) | 
						
							| 44 |  | inmbl |  |-  ( ( ( `' F " { k } ) e. dom vol /\ ( A ` ( n + 1 ) ) e. dom vol ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol ) | 
						
							| 45 | 16 43 44 | syl2anc |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol ) | 
						
							| 46 |  | mblss |  |-  ( ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) | 
						
							| 47 | 45 46 | syl |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) | 
						
							| 48 |  | ovolss |  |-  ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) /\ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) | 
						
							| 49 | 39 47 48 | syl2anc |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) | 
						
							| 50 |  | mblvol |  |-  ( ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) | 
						
							| 51 | 45 50 | syl |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) | 
						
							| 52 | 49 22 51 | 3brtr4d |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) | 
						
							| 53 | 52 | ralrimiva |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) | 
						
							| 54 |  | fveq2 |  |-  ( n = j -> ( A ` n ) = ( A ` j ) ) | 
						
							| 55 | 54 | ineq2d |  |-  ( n = j -> ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i ( A ` j ) ) ) | 
						
							| 56 | 55 | fveq2d |  |-  ( n = j -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) | 
						
							| 57 |  | eqid |  |-  ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) | 
						
							| 58 |  | fvex |  |-  ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) e. _V | 
						
							| 59 | 56 57 58 | fvmpt |  |-  ( j e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) | 
						
							| 60 |  | peano2nn |  |-  ( j e. NN -> ( j + 1 ) e. NN ) | 
						
							| 61 |  | fveq2 |  |-  ( n = ( j + 1 ) -> ( A ` n ) = ( A ` ( j + 1 ) ) ) | 
						
							| 62 | 61 | ineq2d |  |-  ( n = ( j + 1 ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) | 
						
							| 63 | 62 | fveq2d |  |-  ( n = ( j + 1 ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) | 
						
							| 64 |  | fvex |  |-  ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) e. _V | 
						
							| 65 | 63 57 64 | fvmpt |  |-  ( ( j + 1 ) e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) | 
						
							| 66 | 60 65 | syl |  |-  ( j e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) | 
						
							| 67 | 59 66 | breq12d |  |-  ( j e. NN -> ( ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) ) | 
						
							| 68 | 67 | ralbiia |  |-  ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) | 
						
							| 69 |  | fvoveq1 |  |-  ( n = j -> ( A ` ( n + 1 ) ) = ( A ` ( j + 1 ) ) ) | 
						
							| 70 | 69 | ineq2d |  |-  ( n = j -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) | 
						
							| 71 | 70 | fveq2d |  |-  ( n = j -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) | 
						
							| 72 | 56 71 | breq12d |  |-  ( n = j -> ( ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) ) | 
						
							| 73 | 72 | cbvralvw |  |-  ( A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) | 
						
							| 74 | 68 73 | bitr4i |  |-  ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) | 
						
							| 75 | 53 74 | sylibr |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) ) | 
						
							| 76 | 75 | r19.21bi |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) ) | 
						
							| 77 |  | ovolss |  |-  ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) /\ ( `' F " { k } ) C_ RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( `' F " { k } ) ) ) | 
						
							| 78 | 23 26 77 | sylancr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( `' F " { k } ) ) ) | 
						
							| 79 | 78 22 28 | 3brtr4d |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) | 
						
							| 80 | 79 | ralrimiva |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) | 
						
							| 81 | 59 | breq1d |  |-  ( j e. NN -> ( ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 82 | 81 | ralbiia |  |-  ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) | 
						
							| 83 | 56 | breq1d |  |-  ( n = j -> ( ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 84 | 83 | cbvralvw |  |-  ( A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) | 
						
							| 85 | 82 84 | bitr4i |  |-  ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) | 
						
							| 86 | 80 85 | sylibr |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) ) | 
						
							| 87 |  | brralrspcev |  |-  ( ( ( vol ` ( `' F " { k } ) ) e. RR /\ A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) ) -> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) | 
						
							| 88 | 30 86 87 | syl2anc |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) | 
						
							| 89 | 6 13 36 76 88 | climsup |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ~~> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) | 
						
							| 90 | 20 | fmpttd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol ) | 
						
							| 91 | 39 | ralrimiva |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) | 
						
							| 92 |  | eqid |  |-  ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) | 
						
							| 93 |  | fvex |  |-  ( A ` j ) e. _V | 
						
							| 94 | 93 | inex2 |  |-  ( ( `' F " { k } ) i^i ( A ` j ) ) e. _V | 
						
							| 95 | 55 92 94 | fvmpt |  |-  ( j e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( ( `' F " { k } ) i^i ( A ` j ) ) ) | 
						
							| 96 |  | fvex |  |-  ( A ` ( j + 1 ) ) e. _V | 
						
							| 97 | 96 | inex2 |  |-  ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) e. _V | 
						
							| 98 | 62 92 97 | fvmpt |  |-  ( ( j + 1 ) e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) | 
						
							| 99 | 60 98 | syl |  |-  ( j e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) | 
						
							| 100 | 95 99 | sseq12d |  |-  ( j e. NN -> ( ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) | 
						
							| 101 | 100 | ralbiia |  |-  ( A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> A. j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) | 
						
							| 102 | 55 70 | sseq12d |  |-  ( n = j -> ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) <-> ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) | 
						
							| 103 | 102 | cbvralvw |  |-  ( A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) <-> A. j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) | 
						
							| 104 | 101 103 | bitr4i |  |-  ( A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) | 
						
							| 105 | 91 104 | sylibr |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) ) | 
						
							| 106 |  | volsup |  |-  ( ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol /\ A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) ) -> ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) | 
						
							| 107 | 90 105 106 | syl2anc |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) | 
						
							| 108 | 95 | iuneq2i |  |-  U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U_ j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) | 
						
							| 109 | 55 | cbviunv |  |-  U_ n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) = U_ j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) | 
						
							| 110 |  | iunin2 |  |-  U_ n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) | 
						
							| 111 | 108 109 110 | 3eqtr2i |  |-  U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) | 
						
							| 112 |  | ffn |  |-  ( A : NN --> dom vol -> A Fn NN ) | 
						
							| 113 |  | fniunfv |  |-  ( A Fn NN -> U_ n e. NN ( A ` n ) = U. ran A ) | 
						
							| 114 | 1 112 113 | 3syl |  |-  ( ph -> U_ n e. NN ( A ` n ) = U. ran A ) | 
						
							| 115 | 114 3 | eqtrd |  |-  ( ph -> U_ n e. NN ( A ` n ) = RR ) | 
						
							| 116 | 115 | adantr |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ n e. NN ( A ` n ) = RR ) | 
						
							| 117 | 116 | ineq2d |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) = ( ( `' F " { k } ) i^i RR ) ) | 
						
							| 118 | 15 | adantr |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) e. dom vol ) | 
						
							| 119 | 118 25 | syl |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) C_ RR ) | 
						
							| 120 |  | dfss2 |  |-  ( ( `' F " { k } ) C_ RR <-> ( ( `' F " { k } ) i^i RR ) = ( `' F " { k } ) ) | 
						
							| 121 | 119 120 | sylib |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i RR ) = ( `' F " { k } ) ) | 
						
							| 122 | 117 121 | eqtrd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) = ( `' F " { k } ) ) | 
						
							| 123 | 111 122 | eqtrid |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( `' F " { k } ) ) | 
						
							| 124 |  | ffn |  |-  ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol -> ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) Fn NN ) | 
						
							| 125 |  | fniunfv |  |-  ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) Fn NN -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) | 
						
							| 126 | 90 124 125 | 3syl |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) | 
						
							| 127 | 123 126 | eqtr3d |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) | 
						
							| 128 | 127 | fveq2d |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) | 
						
							| 129 | 36 | frnd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) C_ RR ) | 
						
							| 130 | 36 | fdmd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = NN ) | 
						
							| 131 |  | 1nn |  |-  1 e. NN | 
						
							| 132 |  | ne0i |  |-  ( 1 e. NN -> NN =/= (/) ) | 
						
							| 133 | 131 132 | mp1i |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> NN =/= (/) ) | 
						
							| 134 | 130 133 | eqnetrd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) | 
						
							| 135 |  | dm0rn0 |  |-  ( dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = (/) <-> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = (/) ) | 
						
							| 136 | 135 | necon3bii |  |-  ( dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) <-> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) | 
						
							| 137 | 134 136 | sylib |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) | 
						
							| 138 |  | ffn |  |-  ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) : NN --> RR -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) Fn NN ) | 
						
							| 139 |  | breq1 |  |-  ( z = ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) -> ( z <_ x <-> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) | 
						
							| 140 | 139 | ralrn |  |-  ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) | 
						
							| 141 | 36 138 140 | 3syl |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) | 
						
							| 142 | 141 | rexbidv |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) | 
						
							| 143 | 88 142 | mpbird |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x ) | 
						
							| 144 |  | supxrre |  |-  ( ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) C_ RR /\ ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) /\ E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) | 
						
							| 145 | 129 137 143 144 | syl3anc |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) | 
						
							| 146 |  | volf |  |-  vol : dom vol --> ( 0 [,] +oo ) | 
						
							| 147 | 146 | a1i |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> vol : dom vol --> ( 0 [,] +oo ) ) | 
						
							| 148 | 147 20 | cofmpt |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) | 
						
							| 149 | 148 | rneqd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) | 
						
							| 150 |  | rnco2 |  |-  ran ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) | 
						
							| 151 | 149 150 | eqtr3di |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) | 
						
							| 152 | 151 | supeq1d |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) | 
						
							| 153 | 145 152 | eqtr3d |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) | 
						
							| 154 | 107 128 153 | 3eqtr4d |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) | 
						
							| 155 | 89 154 | breqtrrd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ~~> ( vol ` ( `' F " { k } ) ) ) | 
						
							| 156 |  | i1ff |  |-  ( F e. dom S.1 -> F : RR --> RR ) | 
						
							| 157 |  | frn |  |-  ( F : RR --> RR -> ran F C_ RR ) | 
						
							| 158 | 4 156 157 | 3syl |  |-  ( ph -> ran F C_ RR ) | 
						
							| 159 | 158 | ssdifssd |  |-  ( ph -> ( ran F \ { 0 } ) C_ RR ) | 
						
							| 160 | 159 | sselda |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) | 
						
							| 161 | 160 | recnd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) | 
						
							| 162 |  | nnex |  |-  NN e. _V | 
						
							| 163 | 162 | mptex |  |-  ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) e. _V | 
						
							| 164 | 163 | a1i |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) e. _V ) | 
						
							| 165 | 36 | ffvelcdmda |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) e. RR ) | 
						
							| 166 | 165 | recnd |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) e. CC ) | 
						
							| 167 | 56 | oveq2d |  |-  ( n = j -> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) | 
						
							| 168 |  | eqid |  |-  ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) = ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) | 
						
							| 169 |  | ovex |  |-  ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) e. _V | 
						
							| 170 | 167 168 169 | fvmpt |  |-  ( j e. NN -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) | 
						
							| 171 | 59 | oveq2d |  |-  ( j e. NN -> ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) | 
						
							| 172 | 170 171 | eqtr4d |  |-  ( j e. NN -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) ) | 
						
							| 173 | 172 | adantl |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) ) | 
						
							| 174 | 6 13 155 161 164 166 173 | climmulc2 |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ~~> ( k x. ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 175 | 162 | mptex |  |-  ( n e. NN |-> ( S.1 ` G ) ) e. _V | 
						
							| 176 | 175 | a1i |  |-  ( ph -> ( n e. NN |-> ( S.1 ` G ) ) e. _V ) | 
						
							| 177 | 160 | adantr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> k e. RR ) | 
						
							| 178 | 177 35 | remulcld |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) e. RR ) | 
						
							| 179 | 178 | fmpttd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) : NN --> RR ) | 
						
							| 180 | 179 | ffvelcdmda |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. RR ) | 
						
							| 181 | 180 | recnd |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. CC ) | 
						
							| 182 | 181 | anasss |  |-  ( ( ph /\ ( k e. ( ran F \ { 0 } ) /\ j e. NN ) ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. CC ) | 
						
							| 183 | 4 | adantr |  |-  ( ( ph /\ n e. NN ) -> F e. dom S.1 ) | 
						
							| 184 | 5 | i1fres |  |-  ( ( F e. dom S.1 /\ ( A ` n ) e. dom vol ) -> G e. dom S.1 ) | 
						
							| 185 | 183 17 184 | syl2anc |  |-  ( ( ph /\ n e. NN ) -> G e. dom S.1 ) | 
						
							| 186 | 12 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( ran F \ { 0 } ) e. Fin ) | 
						
							| 187 |  | ffn |  |-  ( F : RR --> RR -> F Fn RR ) | 
						
							| 188 | 4 156 187 | 3syl |  |-  ( ph -> F Fn RR ) | 
						
							| 189 | 188 | adantr |  |-  ( ( ph /\ n e. NN ) -> F Fn RR ) | 
						
							| 190 |  | fnfvelrn |  |-  ( ( F Fn RR /\ x e. RR ) -> ( F ` x ) e. ran F ) | 
						
							| 191 | 189 190 | sylan |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` x ) e. ran F ) | 
						
							| 192 |  | i1f0rn |  |-  ( F e. dom S.1 -> 0 e. ran F ) | 
						
							| 193 | 4 192 | syl |  |-  ( ph -> 0 e. ran F ) | 
						
							| 194 | 193 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> 0 e. ran F ) | 
						
							| 195 | 191 194 | ifcld |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. ran F ) | 
						
							| 196 | 195 5 | fmptd |  |-  ( ( ph /\ n e. NN ) -> G : RR --> ran F ) | 
						
							| 197 |  | frn |  |-  ( G : RR --> ran F -> ran G C_ ran F ) | 
						
							| 198 |  | ssdif |  |-  ( ran G C_ ran F -> ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) ) | 
						
							| 199 | 196 197 198 | 3syl |  |-  ( ( ph /\ n e. NN ) -> ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) ) | 
						
							| 200 | 158 | adantr |  |-  ( ( ph /\ n e. NN ) -> ran F C_ RR ) | 
						
							| 201 | 200 | ssdifd |  |-  ( ( ph /\ n e. NN ) -> ( ran F \ { 0 } ) C_ ( RR \ { 0 } ) ) | 
						
							| 202 |  | itg1val2 |  |-  ( ( G e. dom S.1 /\ ( ( ran F \ { 0 } ) e. Fin /\ ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) /\ ( ran F \ { 0 } ) C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) ) | 
						
							| 203 | 185 186 199 201 202 | syl13anc |  |-  ( ( ph /\ n e. NN ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) ) | 
						
							| 204 |  | fvex |  |-  ( F ` x ) e. _V | 
						
							| 205 |  | c0ex |  |-  0 e. _V | 
						
							| 206 | 204 205 | ifex |  |-  if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. _V | 
						
							| 207 | 5 | fvmpt2 |  |-  ( ( x e. RR /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. _V ) -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) | 
						
							| 208 | 206 207 | mpan2 |  |-  ( x e. RR -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) | 
						
							| 209 | 208 | adantl |  |-  ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) | 
						
							| 210 | 209 | eqeq1d |  |-  ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) | 
						
							| 211 |  | eldifsni |  |-  ( k e. ( ran F \ { 0 } ) -> k =/= 0 ) | 
						
							| 212 | 211 | ad2antlr |  |-  ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> k =/= 0 ) | 
						
							| 213 |  | neeq1 |  |-  ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 <-> k =/= 0 ) ) | 
						
							| 214 | 212 213 | syl5ibrcom |  |-  ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 ) ) | 
						
							| 215 |  | iffalse |  |-  ( -. x e. ( A ` n ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = 0 ) | 
						
							| 216 | 215 | necon1ai |  |-  ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 -> x e. ( A ` n ) ) | 
						
							| 217 | 214 216 | syl6 |  |-  ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> x e. ( A ` n ) ) ) | 
						
							| 218 | 217 | pm4.71rd |  |-  ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k <-> ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) ) | 
						
							| 219 | 210 218 | bitrd |  |-  ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) ) | 
						
							| 220 |  | iftrue |  |-  ( x e. ( A ` n ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = ( F ` x ) ) | 
						
							| 221 | 220 | eqeq1d |  |-  ( x e. ( A ` n ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k <-> ( F ` x ) = k ) ) | 
						
							| 222 | 221 | pm5.32i |  |-  ( ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) <-> ( x e. ( A ` n ) /\ ( F ` x ) = k ) ) | 
						
							| 223 | 222 | biancomi |  |-  ( ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) <-> ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) | 
						
							| 224 | 219 223 | bitrdi |  |-  ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) | 
						
							| 225 | 224 | pm5.32da |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. RR /\ ( G ` x ) = k ) <-> ( x e. RR /\ ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) ) | 
						
							| 226 |  | anass |  |-  ( ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) <-> ( x e. RR /\ ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) | 
						
							| 227 | 225 226 | bitr4di |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. RR /\ ( G ` x ) = k ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) | 
						
							| 228 |  | i1ff |  |-  ( G e. dom S.1 -> G : RR --> RR ) | 
						
							| 229 |  | ffn |  |-  ( G : RR --> RR -> G Fn RR ) | 
						
							| 230 | 185 228 229 | 3syl |  |-  ( ( ph /\ n e. NN ) -> G Fn RR ) | 
						
							| 231 | 230 | adantr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> G Fn RR ) | 
						
							| 232 |  | fniniseg |  |-  ( G Fn RR -> ( x e. ( `' G " { k } ) <-> ( x e. RR /\ ( G ` x ) = k ) ) ) | 
						
							| 233 | 231 232 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' G " { k } ) <-> ( x e. RR /\ ( G ` x ) = k ) ) ) | 
						
							| 234 |  | elin |  |-  ( x e. ( ( `' F " { k } ) i^i ( A ` n ) ) <-> ( x e. ( `' F " { k } ) /\ x e. ( A ` n ) ) ) | 
						
							| 235 | 189 | adantr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> F Fn RR ) | 
						
							| 236 |  | fniniseg |  |-  ( F Fn RR -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) | 
						
							| 237 | 235 236 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) | 
						
							| 238 | 237 | anbi1d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. ( `' F " { k } ) /\ x e. ( A ` n ) ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) | 
						
							| 239 | 234 238 | bitrid |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( ( `' F " { k } ) i^i ( A ` n ) ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) | 
						
							| 240 | 227 233 239 | 3bitr4d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) | 
						
							| 241 | 240 | alrimiv |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> A. x ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) | 
						
							| 242 |  | nfmpt1 |  |-  F/_ x ( x e. RR |-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) | 
						
							| 243 | 5 242 | nfcxfr |  |-  F/_ x G | 
						
							| 244 | 243 | nfcnv |  |-  F/_ x `' G | 
						
							| 245 |  | nfcv |  |-  F/_ x { k } | 
						
							| 246 | 244 245 | nfima |  |-  F/_ x ( `' G " { k } ) | 
						
							| 247 |  | nfcv |  |-  F/_ x ( ( `' F " { k } ) i^i ( A ` n ) ) | 
						
							| 248 | 246 247 | cleqf |  |-  ( ( `' G " { k } ) = ( ( `' F " { k } ) i^i ( A ` n ) ) <-> A. x ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) | 
						
							| 249 | 241 248 | sylibr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( `' G " { k } ) = ( ( `' F " { k } ) i^i ( A ` n ) ) ) | 
						
							| 250 | 249 | fveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' G " { k } ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) | 
						
							| 251 | 250 | oveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' G " { k } ) ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) | 
						
							| 252 | 251 | sumeq2dv |  |-  ( ( ph /\ n e. NN ) -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) | 
						
							| 253 | 203 252 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) | 
						
							| 254 | 253 | mpteq2dva |  |-  ( ph -> ( n e. NN |-> ( S.1 ` G ) ) = ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ) | 
						
							| 255 | 254 | fveq1d |  |-  ( ph -> ( ( n e. NN |-> ( S.1 ` G ) ) ` j ) = ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) | 
						
							| 256 | 167 | sumeq2sdv |  |-  ( n = j -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) | 
						
							| 257 |  | eqid |  |-  ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) = ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) | 
						
							| 258 |  | sumex |  |-  sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) e. _V | 
						
							| 259 | 256 257 258 | fvmpt |  |-  ( j e. NN -> ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) | 
						
							| 260 | 170 | sumeq2sdv |  |-  ( j e. NN -> sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) | 
						
							| 261 | 259 260 | eqtr4d |  |-  ( j e. NN -> ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) | 
						
							| 262 | 255 261 | sylan9eq |  |-  ( ( ph /\ j e. NN ) -> ( ( n e. NN |-> ( S.1 ` G ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) | 
						
							| 263 | 6 7 12 174 176 182 262 | climfsum |  |-  ( ph -> ( n e. NN |-> ( S.1 ` G ) ) ~~> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 264 |  | itg1val |  |-  ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 265 | 4 264 | syl |  |-  ( ph -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 266 | 263 265 | breqtrrd |  |-  ( ph -> ( n e. NN |-> ( S.1 ` G ) ) ~~> ( S.1 ` F ) ) |