Step |
Hyp |
Ref |
Expression |
1 |
|
itg1climres.1 |
|- ( ph -> A : NN --> dom vol ) |
2 |
|
itg1climres.2 |
|- ( ( ph /\ n e. NN ) -> ( A ` n ) C_ ( A ` ( n + 1 ) ) ) |
3 |
|
itg1climres.3 |
|- ( ph -> U. ran A = RR ) |
4 |
|
itg1climres.4 |
|- ( ph -> F e. dom S.1 ) |
5 |
|
itg1climres.5 |
|- G = ( x e. RR |-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
6 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
7 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
8 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
9 |
4 8
|
syl |
|- ( ph -> ran F e. Fin ) |
10 |
|
difss |
|- ( ran F \ { 0 } ) C_ ran F |
11 |
|
ssfi |
|- ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) |
12 |
9 10 11
|
sylancl |
|- ( ph -> ( ran F \ { 0 } ) e. Fin ) |
13 |
|
1zzd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 1 e. ZZ ) |
14 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { k } ) e. dom vol ) |
15 |
4 14
|
syl |
|- ( ph -> ( `' F " { k } ) e. dom vol ) |
16 |
15
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( `' F " { k } ) e. dom vol ) |
17 |
1
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( A ` n ) e. dom vol ) |
18 |
17
|
adantlr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` n ) e. dom vol ) |
19 |
|
inmbl |
|- ( ( ( `' F " { k } ) e. dom vol /\ ( A ` n ) e. dom vol ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol ) |
20 |
16 18 19
|
syl2anc |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol ) |
21 |
|
mblvol |
|- ( ( ( `' F " { k } ) i^i ( A ` n ) ) e. dom vol -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
22 |
20 21
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
23 |
|
inss1 |
|- ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) |
24 |
23
|
a1i |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) ) |
25 |
|
mblss |
|- ( ( `' F " { k } ) e. dom vol -> ( `' F " { k } ) C_ RR ) |
26 |
16 25
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( `' F " { k } ) C_ RR ) |
27 |
|
mblvol |
|- ( ( `' F " { k } ) e. dom vol -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
28 |
16 27
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
29 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
30 |
4 29
|
sylan |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
31 |
30
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
32 |
28 31
|
eqeltrrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( `' F " { k } ) ) e. RR ) |
33 |
|
ovolsscl |
|- ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) /\ ( `' F " { k } ) C_ RR /\ ( vol* ` ( `' F " { k } ) ) e. RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) |
34 |
24 26 32 33
|
syl3anc |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) |
35 |
22 34
|
eqeltrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) e. RR ) |
36 |
35
|
fmpttd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) : NN --> RR ) |
37 |
2
|
adantlr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` n ) C_ ( A ` ( n + 1 ) ) ) |
38 |
|
sslin |
|- ( ( A ` n ) C_ ( A ` ( n + 1 ) ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
39 |
37 38
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
40 |
1
|
adantr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A : NN --> dom vol ) |
41 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
42 |
|
ffvelrn |
|- ( ( A : NN --> dom vol /\ ( n + 1 ) e. NN ) -> ( A ` ( n + 1 ) ) e. dom vol ) |
43 |
40 41 42
|
syl2an |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( A ` ( n + 1 ) ) e. dom vol ) |
44 |
|
inmbl |
|- ( ( ( `' F " { k } ) e. dom vol /\ ( A ` ( n + 1 ) ) e. dom vol ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol ) |
45 |
16 43 44
|
syl2anc |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol ) |
46 |
|
mblss |
|- ( ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) |
47 |
45 46
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) |
48 |
|
ovolss |
|- ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) /\ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) C_ RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
49 |
39 47 48
|
syl2anc |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
50 |
|
mblvol |
|- ( ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) e. dom vol -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
51 |
45 50
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol* ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
52 |
49 22 51
|
3brtr4d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
53 |
52
|
ralrimiva |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
54 |
|
fveq2 |
|- ( n = j -> ( A ` n ) = ( A ` j ) ) |
55 |
54
|
ineq2d |
|- ( n = j -> ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i ( A ` j ) ) ) |
56 |
55
|
fveq2d |
|- ( n = j -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) |
57 |
|
eqid |
|- ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
58 |
|
fvex |
|- ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) e. _V |
59 |
56 57 58
|
fvmpt |
|- ( j e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) |
60 |
|
peano2nn |
|- ( j e. NN -> ( j + 1 ) e. NN ) |
61 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( A ` n ) = ( A ` ( j + 1 ) ) ) |
62 |
61
|
ineq2d |
|- ( n = ( j + 1 ) -> ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
63 |
62
|
fveq2d |
|- ( n = ( j + 1 ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
64 |
|
fvex |
|- ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) e. _V |
65 |
63 57 64
|
fvmpt |
|- ( ( j + 1 ) e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
66 |
60 65
|
syl |
|- ( j e. NN -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
67 |
59 66
|
breq12d |
|- ( j e. NN -> ( ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) ) |
68 |
67
|
ralbiia |
|- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
69 |
|
fvoveq1 |
|- ( n = j -> ( A ` ( n + 1 ) ) = ( A ` ( j + 1 ) ) ) |
70 |
69
|
ineq2d |
|- ( n = j -> ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
71 |
70
|
fveq2d |
|- ( n = j -> ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
72 |
56 71
|
breq12d |
|- ( n = j -> ( ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) ) |
73 |
72
|
cbvralvw |
|- ( A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
74 |
68 73
|
bitr4i |
|- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) <-> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) ) |
75 |
53 74
|
sylibr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) ) |
76 |
75
|
r19.21bi |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` ( j + 1 ) ) ) |
77 |
|
ovolss |
|- ( ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( `' F " { k } ) /\ ( `' F " { k } ) C_ RR ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( `' F " { k } ) ) ) |
78 |
23 26 77
|
sylancr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol* ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol* ` ( `' F " { k } ) ) ) |
79 |
78 22 28
|
3brtr4d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
80 |
79
|
ralrimiva |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
81 |
59
|
breq1d |
|- ( j e. NN -> ( ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) ) |
82 |
81
|
ralbiia |
|- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
83 |
56
|
breq1d |
|- ( n = j -> ( ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) <-> ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) ) |
84 |
83
|
cbvralvw |
|- ( A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) <-> A. j e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
85 |
82 84
|
bitr4i |
|- ( A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) <-> A. n e. NN ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) <_ ( vol ` ( `' F " { k } ) ) ) |
86 |
80 85
|
sylibr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) ) |
87 |
|
brralrspcev |
|- ( ( ( vol ` ( `' F " { k } ) ) e. RR /\ A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ ( vol ` ( `' F " { k } ) ) ) -> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) |
88 |
30 86 87
|
syl2anc |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) |
89 |
6 13 36 76 88
|
climsup |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ~~> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
90 |
20
|
fmpttd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol ) |
91 |
39
|
ralrimiva |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
92 |
|
eqid |
|- ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) = ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) |
93 |
|
fvex |
|- ( A ` j ) e. _V |
94 |
93
|
inex2 |
|- ( ( `' F " { k } ) i^i ( A ` j ) ) e. _V |
95 |
55 92 94
|
fvmpt |
|- ( j e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( ( `' F " { k } ) i^i ( A ` j ) ) ) |
96 |
|
fvex |
|- ( A ` ( j + 1 ) ) e. _V |
97 |
96
|
inex2 |
|- ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) e. _V |
98 |
62 92 97
|
fvmpt |
|- ( ( j + 1 ) e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
99 |
60 98
|
syl |
|- ( j e. NN -> ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) = ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
100 |
95 99
|
sseq12d |
|- ( j e. NN -> ( ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
101 |
100
|
ralbiia |
|- ( A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> A. j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
102 |
55 70
|
sseq12d |
|- ( n = j -> ( ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) <-> ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) ) |
103 |
102
|
cbvralvw |
|- ( A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) <-> A. j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( j + 1 ) ) ) ) |
104 |
101 103
|
bitr4i |
|- ( A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) <-> A. n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) C_ ( ( `' F " { k } ) i^i ( A ` ( n + 1 ) ) ) ) |
105 |
91 104
|
sylibr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) ) |
106 |
|
volsup |
|- ( ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol /\ A. j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) C_ ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` ( j + 1 ) ) ) -> ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
107 |
90 105 106
|
syl2anc |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
108 |
95
|
iuneq2i |
|- U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U_ j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) |
109 |
55
|
cbviunv |
|- U_ n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) = U_ j e. NN ( ( `' F " { k } ) i^i ( A ` j ) ) |
110 |
|
iunin2 |
|- U_ n e. NN ( ( `' F " { k } ) i^i ( A ` n ) ) = ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) |
111 |
108 109 110
|
3eqtr2i |
|- U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) |
112 |
|
ffn |
|- ( A : NN --> dom vol -> A Fn NN ) |
113 |
|
fniunfv |
|- ( A Fn NN -> U_ n e. NN ( A ` n ) = U. ran A ) |
114 |
1 112 113
|
3syl |
|- ( ph -> U_ n e. NN ( A ` n ) = U. ran A ) |
115 |
114 3
|
eqtrd |
|- ( ph -> U_ n e. NN ( A ` n ) = RR ) |
116 |
115
|
adantr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ n e. NN ( A ` n ) = RR ) |
117 |
116
|
ineq2d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) = ( ( `' F " { k } ) i^i RR ) ) |
118 |
15
|
adantr |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) e. dom vol ) |
119 |
118 25
|
syl |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) C_ RR ) |
120 |
|
df-ss |
|- ( ( `' F " { k } ) C_ RR <-> ( ( `' F " { k } ) i^i RR ) = ( `' F " { k } ) ) |
121 |
119 120
|
sylib |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i RR ) = ( `' F " { k } ) ) |
122 |
117 121
|
eqtrd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( `' F " { k } ) i^i U_ n e. NN ( A ` n ) ) = ( `' F " { k } ) ) |
123 |
111 122
|
syl5eq |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = ( `' F " { k } ) ) |
124 |
|
ffn |
|- ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) : NN --> dom vol -> ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) Fn NN ) |
125 |
|
fniunfv |
|- ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) Fn NN -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
126 |
90 124 125
|
3syl |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> U_ j e. NN ( ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ` j ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
127 |
123 126
|
eqtr3d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) = U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
128 |
127
|
fveq2d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = ( vol ` U. ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
129 |
36
|
frnd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) C_ RR ) |
130 |
36
|
fdmd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = NN ) |
131 |
|
1nn |
|- 1 e. NN |
132 |
|
ne0i |
|- ( 1 e. NN -> NN =/= (/) ) |
133 |
131 132
|
mp1i |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> NN =/= (/) ) |
134 |
130 133
|
eqnetrd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) |
135 |
|
dm0rn0 |
|- ( dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = (/) <-> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = (/) ) |
136 |
135
|
necon3bii |
|- ( dom ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) <-> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) |
137 |
134 136
|
sylib |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) ) |
138 |
|
ffn |
|- ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) : NN --> RR -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) Fn NN ) |
139 |
|
breq1 |
|- ( z = ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) -> ( z <_ x <-> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
140 |
139
|
ralrn |
|- ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
141 |
36 138 140
|
3syl |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
142 |
141
|
rexbidv |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x <-> E. x e. RR A. j e. NN ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) <_ x ) ) |
143 |
88 142
|
mpbird |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x ) |
144 |
|
supxrre |
|- ( ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) C_ RR /\ ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) =/= (/) /\ E. x e. RR A. z e. ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) z <_ x ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
145 |
129 137 143 144
|
syl3anc |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
146 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
147 |
146
|
a1i |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> vol : dom vol --> ( 0 [,] +oo ) ) |
148 |
147 20
|
cofmpt |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
149 |
148
|
rneqd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
150 |
|
rnco2 |
|- ran ( vol o. ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
151 |
149 150
|
eqtr3di |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
152 |
151
|
supeq1d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
153 |
145 152
|
eqtr3d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) = sup ( ( vol " ran ( n e. NN |-> ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR* , < ) ) |
154 |
107 128 153
|
3eqtr4d |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = sup ( ran ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) , RR , < ) ) |
155 |
89 154
|
breqtrrd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ~~> ( vol ` ( `' F " { k } ) ) ) |
156 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
157 |
|
frn |
|- ( F : RR --> RR -> ran F C_ RR ) |
158 |
4 156 157
|
3syl |
|- ( ph -> ran F C_ RR ) |
159 |
158
|
ssdifssd |
|- ( ph -> ( ran F \ { 0 } ) C_ RR ) |
160 |
159
|
sselda |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) |
161 |
160
|
recnd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) |
162 |
|
nnex |
|- NN e. _V |
163 |
162
|
mptex |
|- ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) e. _V |
164 |
163
|
a1i |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) e. _V ) |
165 |
36
|
ffvelrnda |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) e. RR ) |
166 |
165
|
recnd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) e. CC ) |
167 |
56
|
oveq2d |
|- ( n = j -> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
168 |
|
eqid |
|- ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) = ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
169 |
|
ovex |
|- ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) e. _V |
170 |
167 168 169
|
fvmpt |
|- ( j e. NN -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
171 |
59
|
oveq2d |
|- ( j e. NN -> ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
172 |
170 171
|
eqtr4d |
|- ( j e. NN -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) ) |
173 |
172
|
adantl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = ( k x. ( ( n e. NN |-> ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ` j ) ) ) |
174 |
6 13 155 161 164 166 173
|
climmulc2 |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ~~> ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
175 |
162
|
mptex |
|- ( n e. NN |-> ( S.1 ` G ) ) e. _V |
176 |
175
|
a1i |
|- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) e. _V ) |
177 |
160
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> k e. RR ) |
178 |
177 35
|
remulcld |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ n e. NN ) -> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) e. RR ) |
179 |
178
|
fmpttd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) : NN --> RR ) |
180 |
179
|
ffvelrnda |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. RR ) |
181 |
180
|
recnd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ j e. NN ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. CC ) |
182 |
181
|
anasss |
|- ( ( ph /\ ( k e. ( ran F \ { 0 } ) /\ j e. NN ) ) -> ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) e. CC ) |
183 |
4
|
adantr |
|- ( ( ph /\ n e. NN ) -> F e. dom S.1 ) |
184 |
5
|
i1fres |
|- ( ( F e. dom S.1 /\ ( A ` n ) e. dom vol ) -> G e. dom S.1 ) |
185 |
183 17 184
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> G e. dom S.1 ) |
186 |
12
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( ran F \ { 0 } ) e. Fin ) |
187 |
|
ffn |
|- ( F : RR --> RR -> F Fn RR ) |
188 |
4 156 187
|
3syl |
|- ( ph -> F Fn RR ) |
189 |
188
|
adantr |
|- ( ( ph /\ n e. NN ) -> F Fn RR ) |
190 |
|
fnfvelrn |
|- ( ( F Fn RR /\ x e. RR ) -> ( F ` x ) e. ran F ) |
191 |
189 190
|
sylan |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` x ) e. ran F ) |
192 |
|
i1f0rn |
|- ( F e. dom S.1 -> 0 e. ran F ) |
193 |
4 192
|
syl |
|- ( ph -> 0 e. ran F ) |
194 |
193
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> 0 e. ran F ) |
195 |
191 194
|
ifcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. ran F ) |
196 |
195 5
|
fmptd |
|- ( ( ph /\ n e. NN ) -> G : RR --> ran F ) |
197 |
|
frn |
|- ( G : RR --> ran F -> ran G C_ ran F ) |
198 |
|
ssdif |
|- ( ran G C_ ran F -> ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) ) |
199 |
196 197 198
|
3syl |
|- ( ( ph /\ n e. NN ) -> ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) ) |
200 |
158
|
adantr |
|- ( ( ph /\ n e. NN ) -> ran F C_ RR ) |
201 |
200
|
ssdifd |
|- ( ( ph /\ n e. NN ) -> ( ran F \ { 0 } ) C_ ( RR \ { 0 } ) ) |
202 |
|
itg1val2 |
|- ( ( G e. dom S.1 /\ ( ( ran F \ { 0 } ) e. Fin /\ ( ran G \ { 0 } ) C_ ( ran F \ { 0 } ) /\ ( ran F \ { 0 } ) C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) ) |
203 |
185 186 199 201 202
|
syl13anc |
|- ( ( ph /\ n e. NN ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) ) |
204 |
|
fvex |
|- ( F ` x ) e. _V |
205 |
|
c0ex |
|- 0 e. _V |
206 |
204 205
|
ifex |
|- if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. _V |
207 |
5
|
fvmpt2 |
|- ( ( x e. RR /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) e. _V ) -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
208 |
206 207
|
mpan2 |
|- ( x e. RR -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
209 |
208
|
adantl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( G ` x ) = if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
210 |
209
|
eqeq1d |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) |
211 |
|
eldifsni |
|- ( k e. ( ran F \ { 0 } ) -> k =/= 0 ) |
212 |
211
|
ad2antlr |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> k =/= 0 ) |
213 |
|
neeq1 |
|- ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 <-> k =/= 0 ) ) |
214 |
212 213
|
syl5ibrcom |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 ) ) |
215 |
|
iffalse |
|- ( -. x e. ( A ` n ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = 0 ) |
216 |
215
|
necon1ai |
|- ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) =/= 0 -> x e. ( A ` n ) ) |
217 |
214 216
|
syl6 |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k -> x e. ( A ` n ) ) ) |
218 |
217
|
pm4.71rd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k <-> ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) ) |
219 |
210 218
|
bitrd |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) ) ) |
220 |
|
iftrue |
|- ( x e. ( A ` n ) -> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = ( F ` x ) ) |
221 |
220
|
eqeq1d |
|- ( x e. ( A ` n ) -> ( if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k <-> ( F ` x ) = k ) ) |
222 |
221
|
pm5.32i |
|- ( ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) <-> ( x e. ( A ` n ) /\ ( F ` x ) = k ) ) |
223 |
222
|
biancomi |
|- ( ( x e. ( A ` n ) /\ if ( x e. ( A ` n ) , ( F ` x ) , 0 ) = k ) <-> ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) |
224 |
219 223
|
bitrdi |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` x ) = k <-> ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) |
225 |
224
|
pm5.32da |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. RR /\ ( G ` x ) = k ) <-> ( x e. RR /\ ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) ) |
226 |
|
anass |
|- ( ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) <-> ( x e. RR /\ ( ( F ` x ) = k /\ x e. ( A ` n ) ) ) ) |
227 |
225 226
|
bitr4di |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. RR /\ ( G ` x ) = k ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) |
228 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
229 |
|
ffn |
|- ( G : RR --> RR -> G Fn RR ) |
230 |
185 228 229
|
3syl |
|- ( ( ph /\ n e. NN ) -> G Fn RR ) |
231 |
230
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> G Fn RR ) |
232 |
|
fniniseg |
|- ( G Fn RR -> ( x e. ( `' G " { k } ) <-> ( x e. RR /\ ( G ` x ) = k ) ) ) |
233 |
231 232
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' G " { k } ) <-> ( x e. RR /\ ( G ` x ) = k ) ) ) |
234 |
|
elin |
|- ( x e. ( ( `' F " { k } ) i^i ( A ` n ) ) <-> ( x e. ( `' F " { k } ) /\ x e. ( A ` n ) ) ) |
235 |
189
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> F Fn RR ) |
236 |
|
fniniseg |
|- ( F Fn RR -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
237 |
235 236
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
238 |
237
|
anbi1d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. ( `' F " { k } ) /\ x e. ( A ` n ) ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) |
239 |
234 238
|
syl5bb |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( ( `' F " { k } ) i^i ( A ` n ) ) <-> ( ( x e. RR /\ ( F ` x ) = k ) /\ x e. ( A ` n ) ) ) ) |
240 |
227 233 239
|
3bitr4d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
241 |
240
|
alrimiv |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> A. x ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
242 |
|
nfmpt1 |
|- F/_ x ( x e. RR |-> if ( x e. ( A ` n ) , ( F ` x ) , 0 ) ) |
243 |
5 242
|
nfcxfr |
|- F/_ x G |
244 |
243
|
nfcnv |
|- F/_ x `' G |
245 |
|
nfcv |
|- F/_ x { k } |
246 |
244 245
|
nfima |
|- F/_ x ( `' G " { k } ) |
247 |
|
nfcv |
|- F/_ x ( ( `' F " { k } ) i^i ( A ` n ) ) |
248 |
246 247
|
cleqf |
|- ( ( `' G " { k } ) = ( ( `' F " { k } ) i^i ( A ` n ) ) <-> A. x ( x e. ( `' G " { k } ) <-> x e. ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
249 |
241 248
|
sylibr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( `' G " { k } ) = ( ( `' F " { k } ) i^i ( A ` n ) ) ) |
250 |
249
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' G " { k } ) ) = ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) |
251 |
250
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' G " { k } ) ) ) = ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
252 |
251
|
sumeq2dv |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' G " { k } ) ) ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
253 |
203 252
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( S.1 ` G ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
254 |
253
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) = ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ) |
255 |
254
|
fveq1d |
|- ( ph -> ( ( n e. NN |-> ( S.1 ` G ) ) ` j ) = ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) |
256 |
167
|
sumeq2sdv |
|- ( n = j -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
257 |
|
eqid |
|- ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) = ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) |
258 |
|
sumex |
|- sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) e. _V |
259 |
256 257 258
|
fvmpt |
|- ( j e. NN -> ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
260 |
170
|
sumeq2sdv |
|- ( j e. NN -> sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` j ) ) ) ) ) |
261 |
259 260
|
eqtr4d |
|- ( j e. NN -> ( ( n e. NN |-> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) |
262 |
255 261
|
sylan9eq |
|- ( ( ph /\ j e. NN ) -> ( ( n e. NN |-> ( S.1 ` G ) ) ` j ) = sum_ k e. ( ran F \ { 0 } ) ( ( n e. NN |-> ( k x. ( vol ` ( ( `' F " { k } ) i^i ( A ` n ) ) ) ) ) ` j ) ) |
263 |
6 7 12 174 176 182 262
|
climfsum |
|- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) ~~> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
264 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
265 |
4 264
|
syl |
|- ( ph -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
266 |
263 265
|
breqtrrd |
|- ( ph -> ( n e. NN |-> ( S.1 ` G ) ) ~~> ( S.1 ` F ) ) |