| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1frn |  |-  ( F e. dom S.1 -> ran F e. Fin ) | 
						
							| 2 |  | difss |  |-  ( ran F \ { 0 } ) C_ ran F | 
						
							| 3 |  | ssfi |  |-  ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) | 
						
							| 4 | 1 2 3 | sylancl |  |-  ( F e. dom S.1 -> ( ran F \ { 0 } ) e. Fin ) | 
						
							| 5 | 4 | adantr |  |-  ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( ran F \ { 0 } ) e. Fin ) | 
						
							| 6 |  | i1ff |  |-  ( F e. dom S.1 -> F : RR --> RR ) | 
						
							| 7 | 6 | adantr |  |-  ( ( F e. dom S.1 /\ 0p oR <_ F ) -> F : RR --> RR ) | 
						
							| 8 | 7 | frnd |  |-  ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ran F C_ RR ) | 
						
							| 9 | 8 | ssdifssd |  |-  ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( ran F \ { 0 } ) C_ RR ) | 
						
							| 10 | 9 | sselda |  |-  ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> x e. RR ) | 
						
							| 11 |  | i1fima2sn |  |-  ( ( F e. dom S.1 /\ x e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) | 
						
							| 12 | 11 | adantlr |  |-  ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) | 
						
							| 13 | 10 12 | remulcld |  |-  ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) e. RR ) | 
						
							| 14 |  | eldifi |  |-  ( x e. ( ran F \ { 0 } ) -> x e. ran F ) | 
						
							| 15 |  | 0cn |  |-  0 e. CC | 
						
							| 16 |  | fnconstg |  |-  ( 0 e. CC -> ( CC X. { 0 } ) Fn CC ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( CC X. { 0 } ) Fn CC | 
						
							| 18 |  | df-0p |  |-  0p = ( CC X. { 0 } ) | 
						
							| 19 | 18 | fneq1i |  |-  ( 0p Fn CC <-> ( CC X. { 0 } ) Fn CC ) | 
						
							| 20 | 17 19 | mpbir |  |-  0p Fn CC | 
						
							| 21 | 20 | a1i |  |-  ( F e. dom S.1 -> 0p Fn CC ) | 
						
							| 22 | 6 | ffnd |  |-  ( F e. dom S.1 -> F Fn RR ) | 
						
							| 23 |  | cnex |  |-  CC e. _V | 
						
							| 24 | 23 | a1i |  |-  ( F e. dom S.1 -> CC e. _V ) | 
						
							| 25 |  | reex |  |-  RR e. _V | 
						
							| 26 | 25 | a1i |  |-  ( F e. dom S.1 -> RR e. _V ) | 
						
							| 27 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 28 |  | sseqin2 |  |-  ( RR C_ CC <-> ( CC i^i RR ) = RR ) | 
						
							| 29 | 27 28 | mpbi |  |-  ( CC i^i RR ) = RR | 
						
							| 30 |  | 0pval |  |-  ( y e. CC -> ( 0p ` y ) = 0 ) | 
						
							| 31 | 30 | adantl |  |-  ( ( F e. dom S.1 /\ y e. CC ) -> ( 0p ` y ) = 0 ) | 
						
							| 32 |  | eqidd |  |-  ( ( F e. dom S.1 /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) | 
						
							| 33 | 21 22 24 26 29 31 32 | ofrfval |  |-  ( F e. dom S.1 -> ( 0p oR <_ F <-> A. y e. RR 0 <_ ( F ` y ) ) ) | 
						
							| 34 | 33 | biimpa |  |-  ( ( F e. dom S.1 /\ 0p oR <_ F ) -> A. y e. RR 0 <_ ( F ` y ) ) | 
						
							| 35 | 22 | adantr |  |-  ( ( F e. dom S.1 /\ 0p oR <_ F ) -> F Fn RR ) | 
						
							| 36 |  | breq2 |  |-  ( x = ( F ` y ) -> ( 0 <_ x <-> 0 <_ ( F ` y ) ) ) | 
						
							| 37 | 36 | ralrn |  |-  ( F Fn RR -> ( A. x e. ran F 0 <_ x <-> A. y e. RR 0 <_ ( F ` y ) ) ) | 
						
							| 38 | 35 37 | syl |  |-  ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( A. x e. ran F 0 <_ x <-> A. y e. RR 0 <_ ( F ` y ) ) ) | 
						
							| 39 | 34 38 | mpbird |  |-  ( ( F e. dom S.1 /\ 0p oR <_ F ) -> A. x e. ran F 0 <_ x ) | 
						
							| 40 | 39 | r19.21bi |  |-  ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ran F ) -> 0 <_ x ) | 
						
							| 41 | 14 40 | sylan2 |  |-  ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> 0 <_ x ) | 
						
							| 42 |  | i1fima |  |-  ( F e. dom S.1 -> ( `' F " { x } ) e. dom vol ) | 
						
							| 43 | 42 | ad2antrr |  |-  ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> ( `' F " { x } ) e. dom vol ) | 
						
							| 44 |  | mblss |  |-  ( ( `' F " { x } ) e. dom vol -> ( `' F " { x } ) C_ RR ) | 
						
							| 45 |  | ovolge0 |  |-  ( ( `' F " { x } ) C_ RR -> 0 <_ ( vol* ` ( `' F " { x } ) ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( `' F " { x } ) e. dom vol -> 0 <_ ( vol* ` ( `' F " { x } ) ) ) | 
						
							| 47 |  | mblvol |  |-  ( ( `' F " { x } ) e. dom vol -> ( vol ` ( `' F " { x } ) ) = ( vol* ` ( `' F " { x } ) ) ) | 
						
							| 48 | 46 47 | breqtrrd |  |-  ( ( `' F " { x } ) e. dom vol -> 0 <_ ( vol ` ( `' F " { x } ) ) ) | 
						
							| 49 | 43 48 | syl |  |-  ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> 0 <_ ( vol ` ( `' F " { x } ) ) ) | 
						
							| 50 | 10 12 41 49 | mulge0d |  |-  ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> 0 <_ ( x x. ( vol ` ( `' F " { x } ) ) ) ) | 
						
							| 51 | 5 13 50 | fsumge0 |  |-  ( ( F e. dom S.1 /\ 0p oR <_ F ) -> 0 <_ sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) | 
						
							| 52 |  | itg1val |  |-  ( F e. dom S.1 -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) | 
						
							| 54 | 51 53 | breqtrrd |  |-  ( ( F e. dom S.1 /\ 0p oR <_ F ) -> 0 <_ ( S.1 ` F ) ) |