Step |
Hyp |
Ref |
Expression |
1 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
2 |
|
difss |
|- ( ran F \ { 0 } ) C_ ran F |
3 |
|
ssfi |
|- ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) |
4 |
1 2 3
|
sylancl |
|- ( F e. dom S.1 -> ( ran F \ { 0 } ) e. Fin ) |
5 |
4
|
adantr |
|- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( ran F \ { 0 } ) e. Fin ) |
6 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
7 |
6
|
adantr |
|- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> F : RR --> RR ) |
8 |
7
|
frnd |
|- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ran F C_ RR ) |
9 |
8
|
ssdifssd |
|- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( ran F \ { 0 } ) C_ RR ) |
10 |
9
|
sselda |
|- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> x e. RR ) |
11 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ x e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
12 |
11
|
adantlr |
|- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
13 |
10 12
|
remulcld |
|- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) e. RR ) |
14 |
|
eldifi |
|- ( x e. ( ran F \ { 0 } ) -> x e. ran F ) |
15 |
|
0cn |
|- 0 e. CC |
16 |
|
fnconstg |
|- ( 0 e. CC -> ( CC X. { 0 } ) Fn CC ) |
17 |
15 16
|
ax-mp |
|- ( CC X. { 0 } ) Fn CC |
18 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
19 |
18
|
fneq1i |
|- ( 0p Fn CC <-> ( CC X. { 0 } ) Fn CC ) |
20 |
17 19
|
mpbir |
|- 0p Fn CC |
21 |
20
|
a1i |
|- ( F e. dom S.1 -> 0p Fn CC ) |
22 |
6
|
ffnd |
|- ( F e. dom S.1 -> F Fn RR ) |
23 |
|
cnex |
|- CC e. _V |
24 |
23
|
a1i |
|- ( F e. dom S.1 -> CC e. _V ) |
25 |
|
reex |
|- RR e. _V |
26 |
25
|
a1i |
|- ( F e. dom S.1 -> RR e. _V ) |
27 |
|
ax-resscn |
|- RR C_ CC |
28 |
|
sseqin2 |
|- ( RR C_ CC <-> ( CC i^i RR ) = RR ) |
29 |
27 28
|
mpbi |
|- ( CC i^i RR ) = RR |
30 |
|
0pval |
|- ( y e. CC -> ( 0p ` y ) = 0 ) |
31 |
30
|
adantl |
|- ( ( F e. dom S.1 /\ y e. CC ) -> ( 0p ` y ) = 0 ) |
32 |
|
eqidd |
|- ( ( F e. dom S.1 /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) |
33 |
21 22 24 26 29 31 32
|
ofrfval |
|- ( F e. dom S.1 -> ( 0p oR <_ F <-> A. y e. RR 0 <_ ( F ` y ) ) ) |
34 |
33
|
biimpa |
|- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> A. y e. RR 0 <_ ( F ` y ) ) |
35 |
22
|
adantr |
|- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> F Fn RR ) |
36 |
|
breq2 |
|- ( x = ( F ` y ) -> ( 0 <_ x <-> 0 <_ ( F ` y ) ) ) |
37 |
36
|
ralrn |
|- ( F Fn RR -> ( A. x e. ran F 0 <_ x <-> A. y e. RR 0 <_ ( F ` y ) ) ) |
38 |
35 37
|
syl |
|- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( A. x e. ran F 0 <_ x <-> A. y e. RR 0 <_ ( F ` y ) ) ) |
39 |
34 38
|
mpbird |
|- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> A. x e. ran F 0 <_ x ) |
40 |
39
|
r19.21bi |
|- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ran F ) -> 0 <_ x ) |
41 |
14 40
|
sylan2 |
|- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> 0 <_ x ) |
42 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { x } ) e. dom vol ) |
43 |
42
|
ad2antrr |
|- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> ( `' F " { x } ) e. dom vol ) |
44 |
|
mblss |
|- ( ( `' F " { x } ) e. dom vol -> ( `' F " { x } ) C_ RR ) |
45 |
|
ovolge0 |
|- ( ( `' F " { x } ) C_ RR -> 0 <_ ( vol* ` ( `' F " { x } ) ) ) |
46 |
44 45
|
syl |
|- ( ( `' F " { x } ) e. dom vol -> 0 <_ ( vol* ` ( `' F " { x } ) ) ) |
47 |
|
mblvol |
|- ( ( `' F " { x } ) e. dom vol -> ( vol ` ( `' F " { x } ) ) = ( vol* ` ( `' F " { x } ) ) ) |
48 |
46 47
|
breqtrrd |
|- ( ( `' F " { x } ) e. dom vol -> 0 <_ ( vol ` ( `' F " { x } ) ) ) |
49 |
43 48
|
syl |
|- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> 0 <_ ( vol ` ( `' F " { x } ) ) ) |
50 |
10 12 41 49
|
mulge0d |
|- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> 0 <_ ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
51 |
5 13 50
|
fsumge0 |
|- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> 0 <_ sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
52 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
53 |
52
|
adantr |
|- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
54 |
51 53
|
breqtrrd |
|- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> 0 <_ ( S.1 ` F ) ) |