| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg10a.1 |
|- ( ph -> F e. dom S.1 ) |
| 2 |
|
itg10a.2 |
|- ( ph -> A C_ RR ) |
| 3 |
|
itg10a.3 |
|- ( ph -> ( vol* ` A ) = 0 ) |
| 4 |
|
itg1ge0a.4 |
|- ( ( ph /\ x e. ( RR \ A ) ) -> 0 <_ ( F ` x ) ) |
| 5 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
| 6 |
1 5
|
syl |
|- ( ph -> ran F e. Fin ) |
| 7 |
|
difss |
|- ( ran F \ { 0 } ) C_ ran F |
| 8 |
|
ssfi |
|- ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) |
| 9 |
6 7 8
|
sylancl |
|- ( ph -> ( ran F \ { 0 } ) e. Fin ) |
| 10 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
| 11 |
1 10
|
syl |
|- ( ph -> F : RR --> RR ) |
| 12 |
11
|
frnd |
|- ( ph -> ran F C_ RR ) |
| 13 |
12
|
ssdifssd |
|- ( ph -> ( ran F \ { 0 } ) C_ RR ) |
| 14 |
13
|
sselda |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) |
| 15 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 16 |
1 15
|
sylan |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 17 |
14 16
|
remulcld |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. RR ) |
| 18 |
|
0le0 |
|- 0 <_ 0 |
| 19 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { k } ) e. dom vol ) |
| 20 |
1 19
|
syl |
|- ( ph -> ( `' F " { k } ) e. dom vol ) |
| 21 |
|
mblvol |
|- ( ( `' F " { k } ) e. dom vol -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
| 24 |
11
|
ffnd |
|- ( ph -> F Fn RR ) |
| 25 |
|
fniniseg |
|- ( F Fn RR -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
| 26 |
24 25
|
syl |
|- ( ph -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
| 27 |
26
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
| 28 |
|
simprl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> x e. RR ) |
| 29 |
|
eldif |
|- ( x e. ( RR \ A ) <-> ( x e. RR /\ -. x e. A ) ) |
| 30 |
4
|
ex |
|- ( ph -> ( x e. ( RR \ A ) -> 0 <_ ( F ` x ) ) ) |
| 31 |
30
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( x e. ( RR \ A ) -> 0 <_ ( F ` x ) ) ) |
| 32 |
|
simprr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( F ` x ) = k ) |
| 33 |
32
|
breq2d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ ( F ` x ) <-> 0 <_ k ) ) |
| 34 |
|
0red |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> 0 e. RR ) |
| 35 |
14
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> k e. RR ) |
| 36 |
34 35
|
lenltd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ k <-> -. k < 0 ) ) |
| 37 |
33 36
|
bitrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ ( F ` x ) <-> -. k < 0 ) ) |
| 38 |
31 37
|
sylibd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( x e. ( RR \ A ) -> -. k < 0 ) ) |
| 39 |
29 38
|
biimtrrid |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( ( x e. RR /\ -. x e. A ) -> -. k < 0 ) ) |
| 40 |
28 39
|
mpand |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( -. x e. A -> -. k < 0 ) ) |
| 41 |
40
|
con4d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( k < 0 -> x e. A ) ) |
| 42 |
41
|
impancom |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( ( x e. RR /\ ( F ` x ) = k ) -> x e. A ) ) |
| 43 |
27 42
|
sylbid |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( x e. ( `' F " { k } ) -> x e. A ) ) |
| 44 |
43
|
ssrdv |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( `' F " { k } ) C_ A ) |
| 45 |
2
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> A C_ RR ) |
| 46 |
3
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol* ` A ) = 0 ) |
| 47 |
|
ovolssnul |
|- ( ( ( `' F " { k } ) C_ A /\ A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) |
| 48 |
44 45 46 47
|
syl3anc |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) |
| 49 |
23 48
|
eqtrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol ` ( `' F " { k } ) ) = 0 ) |
| 50 |
49
|
oveq2d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = ( k x. 0 ) ) |
| 51 |
14
|
recnd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) |
| 52 |
51
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> k e. CC ) |
| 53 |
52
|
mul01d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. 0 ) = 0 ) |
| 54 |
50 53
|
eqtrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = 0 ) |
| 55 |
18 54
|
breqtrrid |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 56 |
14
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> k e. RR ) |
| 57 |
16
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 58 |
|
simpr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ k ) |
| 59 |
20
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( `' F " { k } ) e. dom vol ) |
| 60 |
|
mblss |
|- ( ( `' F " { k } ) e. dom vol -> ( `' F " { k } ) C_ RR ) |
| 61 |
59 60
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( `' F " { k } ) C_ RR ) |
| 62 |
|
ovolge0 |
|- ( ( `' F " { k } ) C_ RR -> 0 <_ ( vol* ` ( `' F " { k } ) ) ) |
| 63 |
61 62
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( vol* ` ( `' F " { k } ) ) ) |
| 64 |
22
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
| 65 |
63 64
|
breqtrrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( vol ` ( `' F " { k } ) ) ) |
| 66 |
56 57 58 65
|
mulge0d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 67 |
|
0red |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 0 e. RR ) |
| 68 |
55 66 14 67
|
ltlecasei |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 69 |
9 17 68
|
fsumge0 |
|- ( ph -> 0 <_ sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 70 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 71 |
1 70
|
syl |
|- ( ph -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 72 |
69 71
|
breqtrrd |
|- ( ph -> 0 <_ ( S.1 ` F ) ) |