| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg10a.1 |  |-  ( ph -> F e. dom S.1 ) | 
						
							| 2 |  | itg10a.2 |  |-  ( ph -> A C_ RR ) | 
						
							| 3 |  | itg10a.3 |  |-  ( ph -> ( vol* ` A ) = 0 ) | 
						
							| 4 |  | itg1ge0a.4 |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> 0 <_ ( F ` x ) ) | 
						
							| 5 |  | i1frn |  |-  ( F e. dom S.1 -> ran F e. Fin ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> ran F e. Fin ) | 
						
							| 7 |  | difss |  |-  ( ran F \ { 0 } ) C_ ran F | 
						
							| 8 |  | ssfi |  |-  ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) | 
						
							| 9 | 6 7 8 | sylancl |  |-  ( ph -> ( ran F \ { 0 } ) e. Fin ) | 
						
							| 10 |  | i1ff |  |-  ( F e. dom S.1 -> F : RR --> RR ) | 
						
							| 11 | 1 10 | syl |  |-  ( ph -> F : RR --> RR ) | 
						
							| 12 | 11 | frnd |  |-  ( ph -> ran F C_ RR ) | 
						
							| 13 | 12 | ssdifssd |  |-  ( ph -> ( ran F \ { 0 } ) C_ RR ) | 
						
							| 14 | 13 | sselda |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) | 
						
							| 15 |  | i1fima2sn |  |-  ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) | 
						
							| 16 | 1 15 | sylan |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) | 
						
							| 17 | 14 16 | remulcld |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. RR ) | 
						
							| 18 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 19 |  | i1fima |  |-  ( F e. dom S.1 -> ( `' F " { k } ) e. dom vol ) | 
						
							| 20 | 1 19 | syl |  |-  ( ph -> ( `' F " { k } ) e. dom vol ) | 
						
							| 21 |  | mblvol |  |-  ( ( `' F " { k } ) e. dom vol -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) | 
						
							| 23 | 22 | ad2antrr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) | 
						
							| 24 | 11 | ffnd |  |-  ( ph -> F Fn RR ) | 
						
							| 25 |  | fniniseg |  |-  ( F Fn RR -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ph -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) | 
						
							| 27 | 26 | ad2antrr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) | 
						
							| 28 |  | simprl |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> x e. RR ) | 
						
							| 29 |  | eldif |  |-  ( x e. ( RR \ A ) <-> ( x e. RR /\ -. x e. A ) ) | 
						
							| 30 | 4 | ex |  |-  ( ph -> ( x e. ( RR \ A ) -> 0 <_ ( F ` x ) ) ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( x e. ( RR \ A ) -> 0 <_ ( F ` x ) ) ) | 
						
							| 32 |  | simprr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( F ` x ) = k ) | 
						
							| 33 | 32 | breq2d |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ ( F ` x ) <-> 0 <_ k ) ) | 
						
							| 34 |  | 0red |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> 0 e. RR ) | 
						
							| 35 | 14 | adantr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> k e. RR ) | 
						
							| 36 | 34 35 | lenltd |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ k <-> -. k < 0 ) ) | 
						
							| 37 | 33 36 | bitrd |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ ( F ` x ) <-> -. k < 0 ) ) | 
						
							| 38 | 31 37 | sylibd |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( x e. ( RR \ A ) -> -. k < 0 ) ) | 
						
							| 39 | 29 38 | biimtrrid |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( ( x e. RR /\ -. x e. A ) -> -. k < 0 ) ) | 
						
							| 40 | 28 39 | mpand |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( -. x e. A -> -. k < 0 ) ) | 
						
							| 41 | 40 | con4d |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( k < 0 -> x e. A ) ) | 
						
							| 42 | 41 | impancom |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( ( x e. RR /\ ( F ` x ) = k ) -> x e. A ) ) | 
						
							| 43 | 27 42 | sylbid |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( x e. ( `' F " { k } ) -> x e. A ) ) | 
						
							| 44 | 43 | ssrdv |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( `' F " { k } ) C_ A ) | 
						
							| 45 | 2 | ad2antrr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> A C_ RR ) | 
						
							| 46 | 3 | ad2antrr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol* ` A ) = 0 ) | 
						
							| 47 |  | ovolssnul |  |-  ( ( ( `' F " { k } ) C_ A /\ A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) | 
						
							| 48 | 44 45 46 47 | syl3anc |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) | 
						
							| 49 | 23 48 | eqtrd |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol ` ( `' F " { k } ) ) = 0 ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = ( k x. 0 ) ) | 
						
							| 51 | 14 | recnd |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> k e. CC ) | 
						
							| 53 | 52 | mul01d |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. 0 ) = 0 ) | 
						
							| 54 | 50 53 | eqtrd |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = 0 ) | 
						
							| 55 | 18 54 | breqtrrid |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 56 | 14 | adantr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> k e. RR ) | 
						
							| 57 | 16 | adantr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( vol ` ( `' F " { k } ) ) e. RR ) | 
						
							| 58 |  | simpr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ k ) | 
						
							| 59 | 20 | ad2antrr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( `' F " { k } ) e. dom vol ) | 
						
							| 60 |  | mblss |  |-  ( ( `' F " { k } ) e. dom vol -> ( `' F " { k } ) C_ RR ) | 
						
							| 61 | 59 60 | syl |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( `' F " { k } ) C_ RR ) | 
						
							| 62 |  | ovolge0 |  |-  ( ( `' F " { k } ) C_ RR -> 0 <_ ( vol* ` ( `' F " { k } ) ) ) | 
						
							| 63 | 61 62 | syl |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( vol* ` ( `' F " { k } ) ) ) | 
						
							| 64 | 22 | ad2antrr |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) | 
						
							| 65 | 63 64 | breqtrrd |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( vol ` ( `' F " { k } ) ) ) | 
						
							| 66 | 56 57 58 65 | mulge0d |  |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 67 |  | 0red |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 0 e. RR ) | 
						
							| 68 | 55 66 14 67 | ltlecasei |  |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 69 | 9 17 68 | fsumge0 |  |-  ( ph -> 0 <_ sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 70 |  | itg1val |  |-  ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 71 | 1 70 | syl |  |-  ( ph -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) | 
						
							| 72 | 69 71 | breqtrrd |  |-  ( ph -> 0 <_ ( S.1 ` F ) ) |