Step |
Hyp |
Ref |
Expression |
1 |
|
itg10a.1 |
|- ( ph -> F e. dom S.1 ) |
2 |
|
itg10a.2 |
|- ( ph -> A C_ RR ) |
3 |
|
itg10a.3 |
|- ( ph -> ( vol* ` A ) = 0 ) |
4 |
|
itg1ge0a.4 |
|- ( ( ph /\ x e. ( RR \ A ) ) -> 0 <_ ( F ` x ) ) |
5 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
6 |
1 5
|
syl |
|- ( ph -> ran F e. Fin ) |
7 |
|
difss |
|- ( ran F \ { 0 } ) C_ ran F |
8 |
|
ssfi |
|- ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) |
9 |
6 7 8
|
sylancl |
|- ( ph -> ( ran F \ { 0 } ) e. Fin ) |
10 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
11 |
1 10
|
syl |
|- ( ph -> F : RR --> RR ) |
12 |
11
|
frnd |
|- ( ph -> ran F C_ RR ) |
13 |
12
|
ssdifssd |
|- ( ph -> ( ran F \ { 0 } ) C_ RR ) |
14 |
13
|
sselda |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) |
15 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
16 |
1 15
|
sylan |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
17 |
14 16
|
remulcld |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. RR ) |
18 |
|
0le0 |
|- 0 <_ 0 |
19 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { k } ) e. dom vol ) |
20 |
1 19
|
syl |
|- ( ph -> ( `' F " { k } ) e. dom vol ) |
21 |
|
mblvol |
|- ( ( `' F " { k } ) e. dom vol -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
22 |
20 21
|
syl |
|- ( ph -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
23 |
22
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
24 |
11
|
ffnd |
|- ( ph -> F Fn RR ) |
25 |
|
fniniseg |
|- ( F Fn RR -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
26 |
24 25
|
syl |
|- ( ph -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
27 |
26
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) ) |
28 |
|
simprl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> x e. RR ) |
29 |
|
eldif |
|- ( x e. ( RR \ A ) <-> ( x e. RR /\ -. x e. A ) ) |
30 |
4
|
ex |
|- ( ph -> ( x e. ( RR \ A ) -> 0 <_ ( F ` x ) ) ) |
31 |
30
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( x e. ( RR \ A ) -> 0 <_ ( F ` x ) ) ) |
32 |
|
simprr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( F ` x ) = k ) |
33 |
32
|
breq2d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ ( F ` x ) <-> 0 <_ k ) ) |
34 |
|
0red |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> 0 e. RR ) |
35 |
14
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> k e. RR ) |
36 |
34 35
|
lenltd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ k <-> -. k < 0 ) ) |
37 |
33 36
|
bitrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( 0 <_ ( F ` x ) <-> -. k < 0 ) ) |
38 |
31 37
|
sylibd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( x e. ( RR \ A ) -> -. k < 0 ) ) |
39 |
29 38
|
syl5bir |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( ( x e. RR /\ -. x e. A ) -> -. k < 0 ) ) |
40 |
28 39
|
mpand |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( -. x e. A -> -. k < 0 ) ) |
41 |
40
|
con4d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( k < 0 -> x e. A ) ) |
42 |
41
|
impancom |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( ( x e. RR /\ ( F ` x ) = k ) -> x e. A ) ) |
43 |
27 42
|
sylbid |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( x e. ( `' F " { k } ) -> x e. A ) ) |
44 |
43
|
ssrdv |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( `' F " { k } ) C_ A ) |
45 |
2
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> A C_ RR ) |
46 |
3
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol* ` A ) = 0 ) |
47 |
|
ovolssnul |
|- ( ( ( `' F " { k } ) C_ A /\ A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) |
48 |
44 45 46 47
|
syl3anc |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol* ` ( `' F " { k } ) ) = 0 ) |
49 |
23 48
|
eqtrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( vol ` ( `' F " { k } ) ) = 0 ) |
50 |
49
|
oveq2d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = ( k x. 0 ) ) |
51 |
14
|
recnd |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) |
52 |
51
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> k e. CC ) |
53 |
52
|
mul01d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. 0 ) = 0 ) |
54 |
50 53
|
eqtrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = 0 ) |
55 |
18 54
|
breqtrrid |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ k < 0 ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
56 |
14
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> k e. RR ) |
57 |
16
|
adantr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
58 |
|
simpr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ k ) |
59 |
20
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( `' F " { k } ) e. dom vol ) |
60 |
|
mblss |
|- ( ( `' F " { k } ) e. dom vol -> ( `' F " { k } ) C_ RR ) |
61 |
59 60
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( `' F " { k } ) C_ RR ) |
62 |
|
ovolge0 |
|- ( ( `' F " { k } ) C_ RR -> 0 <_ ( vol* ` ( `' F " { k } ) ) ) |
63 |
61 62
|
syl |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( vol* ` ( `' F " { k } ) ) ) |
64 |
22
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) ) |
65 |
63 64
|
breqtrrd |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( vol ` ( `' F " { k } ) ) ) |
66 |
56 57 58 65
|
mulge0d |
|- ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ 0 <_ k ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
67 |
|
0red |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 0 e. RR ) |
68 |
55 66 14 67
|
ltlecasei |
|- ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> 0 <_ ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
69 |
9 17 68
|
fsumge0 |
|- ( ph -> 0 <_ sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
70 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
71 |
1 70
|
syl |
|- ( ph -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
72 |
69 71
|
breqtrrd |
|- ( ph -> 0 <_ ( S.1 ` F ) ) |