| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> F e. dom S.1 ) | 
						
							| 2 |  | 0ss |  |-  (/) C_ RR | 
						
							| 3 | 2 | a1i |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> (/) C_ RR ) | 
						
							| 4 |  | ovol0 |  |-  ( vol* ` (/) ) = 0 | 
						
							| 5 | 4 | a1i |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> ( vol* ` (/) ) = 0 ) | 
						
							| 6 |  | simp2 |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> G e. dom S.1 ) | 
						
							| 7 |  | simpl |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F e. dom S.1 ) | 
						
							| 8 |  | i1ff |  |-  ( F e. dom S.1 -> F : RR --> RR ) | 
						
							| 9 |  | ffn |  |-  ( F : RR --> RR -> F Fn RR ) | 
						
							| 10 | 7 8 9 | 3syl |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F Fn RR ) | 
						
							| 11 |  | simpr |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> G e. dom S.1 ) | 
						
							| 12 |  | i1ff |  |-  ( G e. dom S.1 -> G : RR --> RR ) | 
						
							| 13 |  | ffn |  |-  ( G : RR --> RR -> G Fn RR ) | 
						
							| 14 | 11 12 13 | 3syl |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> G Fn RR ) | 
						
							| 15 |  | reex |  |-  RR e. _V | 
						
							| 16 | 15 | a1i |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> RR e. _V ) | 
						
							| 17 |  | inidm |  |-  ( RR i^i RR ) = RR | 
						
							| 18 |  | eqidd |  |-  ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( F ` x ) = ( F ` x ) ) | 
						
							| 19 |  | eqidd |  |-  ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( G ` x ) = ( G ` x ) ) | 
						
							| 20 | 10 14 16 16 17 18 19 | ofrval |  |-  ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ F oR <_ G /\ x e. RR ) -> ( F ` x ) <_ ( G ` x ) ) | 
						
							| 21 | 20 | 3exp |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oR <_ G -> ( x e. RR -> ( F ` x ) <_ ( G ` x ) ) ) ) | 
						
							| 22 | 21 | 3impia |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> ( x e. RR -> ( F ` x ) <_ ( G ` x ) ) ) | 
						
							| 23 |  | eldifi |  |-  ( x e. ( RR \ (/) ) -> x e. RR ) | 
						
							| 24 | 22 23 | impel |  |-  ( ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) /\ x e. ( RR \ (/) ) ) -> ( F ` x ) <_ ( G ` x ) ) | 
						
							| 25 | 1 3 5 6 24 | itg1lea |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> ( S.1 ` F ) <_ ( S.1 ` G ) ) |