Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> F e. dom S.1 ) |
2 |
|
0ss |
|- (/) C_ RR |
3 |
2
|
a1i |
|- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> (/) C_ RR ) |
4 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
5 |
4
|
a1i |
|- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> ( vol* ` (/) ) = 0 ) |
6 |
|
simp2 |
|- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> G e. dom S.1 ) |
7 |
|
simpl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F e. dom S.1 ) |
8 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
9 |
|
ffn |
|- ( F : RR --> RR -> F Fn RR ) |
10 |
7 8 9
|
3syl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F Fn RR ) |
11 |
|
simpr |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> G e. dom S.1 ) |
12 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
13 |
|
ffn |
|- ( G : RR --> RR -> G Fn RR ) |
14 |
11 12 13
|
3syl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> G Fn RR ) |
15 |
|
reex |
|- RR e. _V |
16 |
15
|
a1i |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> RR e. _V ) |
17 |
|
inidm |
|- ( RR i^i RR ) = RR |
18 |
|
eqidd |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( F ` x ) = ( F ` x ) ) |
19 |
|
eqidd |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ x e. RR ) -> ( G ` x ) = ( G ` x ) ) |
20 |
10 14 16 16 17 18 19
|
ofrval |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 ) /\ F oR <_ G /\ x e. RR ) -> ( F ` x ) <_ ( G ` x ) ) |
21 |
20
|
3exp |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oR <_ G -> ( x e. RR -> ( F ` x ) <_ ( G ` x ) ) ) ) |
22 |
21
|
3impia |
|- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> ( x e. RR -> ( F ` x ) <_ ( G ` x ) ) ) |
23 |
|
eldifi |
|- ( x e. ( RR \ (/) ) -> x e. RR ) |
24 |
22 23
|
impel |
|- ( ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) /\ x e. ( RR \ (/) ) ) -> ( F ` x ) <_ ( G ` x ) ) |
25 |
1 3 5 6 24
|
itg1lea |
|- ( ( F e. dom S.1 /\ G e. dom S.1 /\ F oR <_ G ) -> ( S.1 ` F ) <_ ( S.1 ` G ) ) |