| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg10a.1 |  |-  ( ph -> F e. dom S.1 ) | 
						
							| 2 |  | itg10a.2 |  |-  ( ph -> A C_ RR ) | 
						
							| 3 |  | itg10a.3 |  |-  ( ph -> ( vol* ` A ) = 0 ) | 
						
							| 4 |  | itg1lea.4 |  |-  ( ph -> G e. dom S.1 ) | 
						
							| 5 |  | itg1lea.5 |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( G ` x ) ) | 
						
							| 6 |  | i1fsub |  |-  ( ( G e. dom S.1 /\ F e. dom S.1 ) -> ( G oF - F ) e. dom S.1 ) | 
						
							| 7 | 4 1 6 | syl2anc |  |-  ( ph -> ( G oF - F ) e. dom S.1 ) | 
						
							| 8 |  | eldifi |  |-  ( x e. ( RR \ A ) -> x e. RR ) | 
						
							| 9 |  | i1ff |  |-  ( G e. dom S.1 -> G : RR --> RR ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> G : RR --> RR ) | 
						
							| 11 | 10 | ffvelcdmda |  |-  ( ( ph /\ x e. RR ) -> ( G ` x ) e. RR ) | 
						
							| 12 |  | i1ff |  |-  ( F e. dom S.1 -> F : RR --> RR ) | 
						
							| 13 | 1 12 | syl |  |-  ( ph -> F : RR --> RR ) | 
						
							| 14 | 13 | ffvelcdmda |  |-  ( ( ph /\ x e. RR ) -> ( F ` x ) e. RR ) | 
						
							| 15 | 11 14 | subge0d |  |-  ( ( ph /\ x e. RR ) -> ( 0 <_ ( ( G ` x ) - ( F ` x ) ) <-> ( F ` x ) <_ ( G ` x ) ) ) | 
						
							| 16 | 8 15 | sylan2 |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( 0 <_ ( ( G ` x ) - ( F ` x ) ) <-> ( F ` x ) <_ ( G ` x ) ) ) | 
						
							| 17 | 5 16 | mpbird |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> 0 <_ ( ( G ` x ) - ( F ` x ) ) ) | 
						
							| 18 | 10 | ffnd |  |-  ( ph -> G Fn RR ) | 
						
							| 19 | 13 | ffnd |  |-  ( ph -> F Fn RR ) | 
						
							| 20 |  | reex |  |-  RR e. _V | 
						
							| 21 | 20 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 22 |  | inidm |  |-  ( RR i^i RR ) = RR | 
						
							| 23 |  | eqidd |  |-  ( ( ph /\ x e. RR ) -> ( G ` x ) = ( G ` x ) ) | 
						
							| 24 |  | eqidd |  |-  ( ( ph /\ x e. RR ) -> ( F ` x ) = ( F ` x ) ) | 
						
							| 25 | 18 19 21 21 22 23 24 | ofval |  |-  ( ( ph /\ x e. RR ) -> ( ( G oF - F ) ` x ) = ( ( G ` x ) - ( F ` x ) ) ) | 
						
							| 26 | 8 25 | sylan2 |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( ( G oF - F ) ` x ) = ( ( G ` x ) - ( F ` x ) ) ) | 
						
							| 27 | 17 26 | breqtrrd |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> 0 <_ ( ( G oF - F ) ` x ) ) | 
						
							| 28 | 7 2 3 27 | itg1ge0a |  |-  ( ph -> 0 <_ ( S.1 ` ( G oF - F ) ) ) | 
						
							| 29 |  | itg1sub |  |-  ( ( G e. dom S.1 /\ F e. dom S.1 ) -> ( S.1 ` ( G oF - F ) ) = ( ( S.1 ` G ) - ( S.1 ` F ) ) ) | 
						
							| 30 | 4 1 29 | syl2anc |  |-  ( ph -> ( S.1 ` ( G oF - F ) ) = ( ( S.1 ` G ) - ( S.1 ` F ) ) ) | 
						
							| 31 | 28 30 | breqtrd |  |-  ( ph -> 0 <_ ( ( S.1 ` G ) - ( S.1 ` F ) ) ) | 
						
							| 32 |  | itg1cl |  |-  ( G e. dom S.1 -> ( S.1 ` G ) e. RR ) | 
						
							| 33 | 4 32 | syl |  |-  ( ph -> ( S.1 ` G ) e. RR ) | 
						
							| 34 |  | itg1cl |  |-  ( F e. dom S.1 -> ( S.1 ` F ) e. RR ) | 
						
							| 35 | 1 34 | syl |  |-  ( ph -> ( S.1 ` F ) e. RR ) | 
						
							| 36 | 33 35 | subge0d |  |-  ( ph -> ( 0 <_ ( ( S.1 ` G ) - ( S.1 ` F ) ) <-> ( S.1 ` F ) <_ ( S.1 ` G ) ) ) | 
						
							| 37 | 31 36 | mpbid |  |-  ( ph -> ( S.1 ` F ) <_ ( S.1 ` G ) ) |