Metamath Proof Explorer


Theorem itg1mulc

Description: The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses i1fmulc.2
|- ( ph -> F e. dom S.1 )
i1fmulc.3
|- ( ph -> A e. RR )
Assertion itg1mulc
|- ( ph -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) )

Proof

Step Hyp Ref Expression
1 i1fmulc.2
 |-  ( ph -> F e. dom S.1 )
2 i1fmulc.3
 |-  ( ph -> A e. RR )
3 itg10
 |-  ( S.1 ` ( RR X. { 0 } ) ) = 0
4 reex
 |-  RR e. _V
5 4 a1i
 |-  ( ( ph /\ A = 0 ) -> RR e. _V )
6 i1ff
 |-  ( F e. dom S.1 -> F : RR --> RR )
7 1 6 syl
 |-  ( ph -> F : RR --> RR )
8 7 adantr
 |-  ( ( ph /\ A = 0 ) -> F : RR --> RR )
9 2 adantr
 |-  ( ( ph /\ A = 0 ) -> A e. RR )
10 0red
 |-  ( ( ph /\ A = 0 ) -> 0 e. RR )
11 simplr
 |-  ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> A = 0 )
12 11 oveq1d
 |-  ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = ( 0 x. x ) )
13 mul02lem2
 |-  ( x e. RR -> ( 0 x. x ) = 0 )
14 13 adantl
 |-  ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( 0 x. x ) = 0 )
15 12 14 eqtrd
 |-  ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = 0 )
16 5 8 9 10 15 caofid2
 |-  ( ( ph /\ A = 0 ) -> ( ( RR X. { A } ) oF x. F ) = ( RR X. { 0 } ) )
17 16 fveq2d
 |-  ( ( ph /\ A = 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( S.1 ` ( RR X. { 0 } ) ) )
18 simpr
 |-  ( ( ph /\ A = 0 ) -> A = 0 )
19 18 oveq1d
 |-  ( ( ph /\ A = 0 ) -> ( A x. ( S.1 ` F ) ) = ( 0 x. ( S.1 ` F ) ) )
20 itg1cl
 |-  ( F e. dom S.1 -> ( S.1 ` F ) e. RR )
21 1 20 syl
 |-  ( ph -> ( S.1 ` F ) e. RR )
22 21 recnd
 |-  ( ph -> ( S.1 ` F ) e. CC )
23 22 mul02d
 |-  ( ph -> ( 0 x. ( S.1 ` F ) ) = 0 )
24 23 adantr
 |-  ( ( ph /\ A = 0 ) -> ( 0 x. ( S.1 ` F ) ) = 0 )
25 19 24 eqtrd
 |-  ( ( ph /\ A = 0 ) -> ( A x. ( S.1 ` F ) ) = 0 )
26 3 17 25 3eqtr4a
 |-  ( ( ph /\ A = 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) )
27 1 2 i1fmulc
 |-  ( ph -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 )
28 27 adantr
 |-  ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 )
29 i1ff
 |-  ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ( ( RR X. { A } ) oF x. F ) : RR --> RR )
30 28 29 syl
 |-  ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) : RR --> RR )
31 30 frnd
 |-  ( ( ph /\ A =/= 0 ) -> ran ( ( RR X. { A } ) oF x. F ) C_ RR )
32 31 ssdifssd
 |-  ( ( ph /\ A =/= 0 ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR )
33 32 sselda
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m e. RR )
34 33 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m e. CC )
35 2 adantr
 |-  ( ( ph /\ A =/= 0 ) -> A e. RR )
36 35 recnd
 |-  ( ( ph /\ A =/= 0 ) -> A e. CC )
37 36 adantr
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC )
38 simplr
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A =/= 0 )
39 34 37 38 divcan2d
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( A x. ( m / A ) ) = m )
40 1 2 i1fmulclem
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. RR ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) = ( `' F " { ( m / A ) } ) )
41 33 40 syldan
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) = ( `' F " { ( m / A ) } ) )
42 41 fveq2d
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) = ( vol ` ( `' F " { ( m / A ) } ) ) )
43 42 eqcomd
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) = ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) )
44 39 43 oveq12d
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( A x. ( m / A ) ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) = ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) )
45 2 ad2antrr
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. RR )
46 33 45 38 redivcld
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. RR )
47 46 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. CC )
48 1 ad2antrr
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> F e. dom S.1 )
49 45 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC )
50 eldifsni
 |-  ( m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> m =/= 0 )
51 50 adantl
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m =/= 0 )
52 34 49 51 38 divne0d
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) =/= 0 )
53 eldifsn
 |-  ( ( m / A ) e. ( RR \ { 0 } ) <-> ( ( m / A ) e. RR /\ ( m / A ) =/= 0 ) )
54 46 52 53 sylanbrc
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. ( RR \ { 0 } ) )
55 i1fima2sn
 |-  ( ( F e. dom S.1 /\ ( m / A ) e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. RR )
56 48 54 55 syl2anc
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. RR )
57 56 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. CC )
58 37 47 57 mulassd
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( A x. ( m / A ) ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) = ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) )
59 44 58 eqtr3d
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) )
60 59 sumeq2dv
 |-  ( ( ph /\ A =/= 0 ) -> sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) )
61 i1frn
 |-  ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ran ( ( RR X. { A } ) oF x. F ) e. Fin )
62 28 61 syl
 |-  ( ( ph /\ A =/= 0 ) -> ran ( ( RR X. { A } ) oF x. F ) e. Fin )
63 difss
 |-  ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ ran ( ( RR X. { A } ) oF x. F )
64 ssfi
 |-  ( ( ran ( ( RR X. { A } ) oF x. F ) e. Fin /\ ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ ran ( ( RR X. { A } ) oF x. F ) ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) e. Fin )
65 62 63 64 sylancl
 |-  ( ( ph /\ A =/= 0 ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) e. Fin )
66 47 57 mulcld
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) e. CC )
67 65 36 66 fsummulc2
 |-  ( ( ph /\ A =/= 0 ) -> ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) )
68 60 67 eqtr4d
 |-  ( ( ph /\ A =/= 0 ) -> sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) )
69 itg1val
 |-  ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) )
70 28 69 syl
 |-  ( ( ph /\ A =/= 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) )
71 1 adantr
 |-  ( ( ph /\ A =/= 0 ) -> F e. dom S.1 )
72 itg1val
 |-  ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) )
73 71 72 syl
 |-  ( ( ph /\ A =/= 0 ) -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) )
74 id
 |-  ( k = ( m / A ) -> k = ( m / A ) )
75 sneq
 |-  ( k = ( m / A ) -> { k } = { ( m / A ) } )
76 75 imaeq2d
 |-  ( k = ( m / A ) -> ( `' F " { k } ) = ( `' F " { ( m / A ) } ) )
77 76 fveq2d
 |-  ( k = ( m / A ) -> ( vol ` ( `' F " { k } ) ) = ( vol ` ( `' F " { ( m / A ) } ) ) )
78 74 77 oveq12d
 |-  ( k = ( m / A ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) )
79 eqid
 |-  ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) = ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) )
80 eldifi
 |-  ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> n e. ran ( ( RR X. { A } ) oF x. F ) )
81 4 a1i
 |-  ( ph -> RR e. _V )
82 7 ffnd
 |-  ( ph -> F Fn RR )
83 eqidd
 |-  ( ( ph /\ y e. RR ) -> ( F ` y ) = ( F ` y ) )
84 81 2 82 83 ofc1
 |-  ( ( ph /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) = ( A x. ( F ` y ) ) )
85 84 adantlr
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) = ( A x. ( F ` y ) ) )
86 85 oveq1d
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) = ( ( A x. ( F ` y ) ) / A ) )
87 7 adantr
 |-  ( ( ph /\ A =/= 0 ) -> F : RR --> RR )
88 87 ffvelrnda
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. RR )
89 88 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. CC )
90 36 adantr
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> A e. CC )
91 simplr
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> A =/= 0 )
92 89 90 91 divcan3d
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( A x. ( F ` y ) ) / A ) = ( F ` y ) )
93 86 92 eqtrd
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) = ( F ` y ) )
94 87 ffnd
 |-  ( ( ph /\ A =/= 0 ) -> F Fn RR )
95 fnfvelrn
 |-  ( ( F Fn RR /\ y e. RR ) -> ( F ` y ) e. ran F )
96 94 95 sylan
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. ran F )
97 93 96 eqeltrd
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F )
98 97 ralrimiva
 |-  ( ( ph /\ A =/= 0 ) -> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F )
99 30 ffnd
 |-  ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) Fn RR )
100 oveq1
 |-  ( n = ( ( ( RR X. { A } ) oF x. F ) ` y ) -> ( n / A ) = ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) )
101 100 eleq1d
 |-  ( n = ( ( ( RR X. { A } ) oF x. F ) ` y ) -> ( ( n / A ) e. ran F <-> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) )
102 101 ralrn
 |-  ( ( ( RR X. { A } ) oF x. F ) Fn RR -> ( A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F <-> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) )
103 99 102 syl
 |-  ( ( ph /\ A =/= 0 ) -> ( A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F <-> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) )
104 98 103 mpbird
 |-  ( ( ph /\ A =/= 0 ) -> A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F )
105 104 r19.21bi
 |-  ( ( ( ph /\ A =/= 0 ) /\ n e. ran ( ( RR X. { A } ) oF x. F ) ) -> ( n / A ) e. ran F )
106 80 105 sylan2
 |-  ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) e. ran F )
107 32 sselda
 |-  ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. RR )
108 107 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. CC )
109 36 adantr
 |-  ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC )
110 eldifsni
 |-  ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> n =/= 0 )
111 110 adantl
 |-  ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n =/= 0 )
112 simplr
 |-  ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A =/= 0 )
113 108 109 111 112 divne0d
 |-  ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) =/= 0 )
114 eldifsn
 |-  ( ( n / A ) e. ( ran F \ { 0 } ) <-> ( ( n / A ) e. ran F /\ ( n / A ) =/= 0 ) )
115 106 113 114 sylanbrc
 |-  ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) e. ( ran F \ { 0 } ) )
116 eldifi
 |-  ( k e. ( ran F \ { 0 } ) -> k e. ran F )
117 fnfvelrn
 |-  ( ( ( ( RR X. { A } ) oF x. F ) Fn RR /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) e. ran ( ( RR X. { A } ) oF x. F ) )
118 99 117 sylan
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) e. ran ( ( RR X. { A } ) oF x. F ) )
119 85 118 eqeltrrd
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) )
120 119 ralrimiva
 |-  ( ( ph /\ A =/= 0 ) -> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) )
121 oveq2
 |-  ( k = ( F ` y ) -> ( A x. k ) = ( A x. ( F ` y ) ) )
122 121 eleq1d
 |-  ( k = ( F ` y ) -> ( ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) )
123 122 ralrn
 |-  ( F Fn RR -> ( A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) )
124 94 123 syl
 |-  ( ( ph /\ A =/= 0 ) -> ( A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) )
125 120 124 mpbird
 |-  ( ( ph /\ A =/= 0 ) -> A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) )
126 125 r19.21bi
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ran F ) -> ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) )
127 116 126 sylan2
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) )
128 36 adantr
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> A e. CC )
129 87 frnd
 |-  ( ( ph /\ A =/= 0 ) -> ran F C_ RR )
130 129 ssdifssd
 |-  ( ( ph /\ A =/= 0 ) -> ( ran F \ { 0 } ) C_ RR )
131 130 sselda
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k e. RR )
132 131 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k e. CC )
133 simplr
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> A =/= 0 )
134 eldifsni
 |-  ( k e. ( ran F \ { 0 } ) -> k =/= 0 )
135 134 adantl
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k =/= 0 )
136 128 132 133 135 mulne0d
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) =/= 0 )
137 eldifsn
 |-  ( ( A x. k ) e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) <-> ( ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) /\ ( A x. k ) =/= 0 ) )
138 127 136 137 sylanbrc
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) )
139 simpl
 |-  ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) -> n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) )
140 ssel2
 |-  ( ( ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. RR )
141 32 139 140 syl2an
 |-  ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> n e. RR )
142 141 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> n e. CC )
143 2 ad2antrr
 |-  ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A e. RR )
144 143 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A e. CC )
145 131 adantrl
 |-  ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> k e. RR )
146 145 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> k e. CC )
147 simplr
 |-  ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A =/= 0 )
148 142 144 146 147 divmuld
 |-  ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( ( n / A ) = k <-> ( A x. k ) = n ) )
149 148 bicomd
 |-  ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( ( A x. k ) = n <-> ( n / A ) = k ) )
150 eqcom
 |-  ( n = ( A x. k ) <-> ( A x. k ) = n )
151 eqcom
 |-  ( k = ( n / A ) <-> ( n / A ) = k )
152 149 150 151 3bitr4g
 |-  ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( n = ( A x. k ) <-> k = ( n / A ) ) )
153 79 115 138 152 f1o2d
 |-  ( ( ph /\ A =/= 0 ) -> ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) : ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -1-1-onto-> ( ran F \ { 0 } ) )
154 oveq1
 |-  ( n = m -> ( n / A ) = ( m / A ) )
155 ovex
 |-  ( m / A ) e. _V
156 154 79 155 fvmpt
 |-  ( m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) ` m ) = ( m / A ) )
157 156 adantl
 |-  ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) ` m ) = ( m / A ) )
158 i1fima2sn
 |-  ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR )
159 71 158 sylan
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR )
160 131 159 remulcld
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. RR )
161 160 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. CC )
162 78 65 153 157 161 fsumf1o
 |-  ( ( ph /\ A =/= 0 ) -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) )
163 73 162 eqtrd
 |-  ( ( ph /\ A =/= 0 ) -> ( S.1 ` F ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) )
164 163 oveq2d
 |-  ( ( ph /\ A =/= 0 ) -> ( A x. ( S.1 ` F ) ) = ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) )
165 68 70 164 3eqtr4d
 |-  ( ( ph /\ A =/= 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) )
166 26 165 pm2.61dane
 |-  ( ph -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) )