Step |
Hyp |
Ref |
Expression |
1 |
|
i1fmulc.2 |
|- ( ph -> F e. dom S.1 ) |
2 |
|
i1fmulc.3 |
|- ( ph -> A e. RR ) |
3 |
|
itg10 |
|- ( S.1 ` ( RR X. { 0 } ) ) = 0 |
4 |
|
reex |
|- RR e. _V |
5 |
4
|
a1i |
|- ( ( ph /\ A = 0 ) -> RR e. _V ) |
6 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
7 |
1 6
|
syl |
|- ( ph -> F : RR --> RR ) |
8 |
7
|
adantr |
|- ( ( ph /\ A = 0 ) -> F : RR --> RR ) |
9 |
2
|
adantr |
|- ( ( ph /\ A = 0 ) -> A e. RR ) |
10 |
|
0red |
|- ( ( ph /\ A = 0 ) -> 0 e. RR ) |
11 |
|
simplr |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> A = 0 ) |
12 |
11
|
oveq1d |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = ( 0 x. x ) ) |
13 |
|
mul02lem2 |
|- ( x e. RR -> ( 0 x. x ) = 0 ) |
14 |
13
|
adantl |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( 0 x. x ) = 0 ) |
15 |
12 14
|
eqtrd |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = 0 ) |
16 |
5 8 9 10 15
|
caofid2 |
|- ( ( ph /\ A = 0 ) -> ( ( RR X. { A } ) oF x. F ) = ( RR X. { 0 } ) ) |
17 |
16
|
fveq2d |
|- ( ( ph /\ A = 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( S.1 ` ( RR X. { 0 } ) ) ) |
18 |
|
simpr |
|- ( ( ph /\ A = 0 ) -> A = 0 ) |
19 |
18
|
oveq1d |
|- ( ( ph /\ A = 0 ) -> ( A x. ( S.1 ` F ) ) = ( 0 x. ( S.1 ` F ) ) ) |
20 |
|
itg1cl |
|- ( F e. dom S.1 -> ( S.1 ` F ) e. RR ) |
21 |
1 20
|
syl |
|- ( ph -> ( S.1 ` F ) e. RR ) |
22 |
21
|
recnd |
|- ( ph -> ( S.1 ` F ) e. CC ) |
23 |
22
|
mul02d |
|- ( ph -> ( 0 x. ( S.1 ` F ) ) = 0 ) |
24 |
23
|
adantr |
|- ( ( ph /\ A = 0 ) -> ( 0 x. ( S.1 ` F ) ) = 0 ) |
25 |
19 24
|
eqtrd |
|- ( ( ph /\ A = 0 ) -> ( A x. ( S.1 ` F ) ) = 0 ) |
26 |
3 17 25
|
3eqtr4a |
|- ( ( ph /\ A = 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) ) |
27 |
1 2
|
i1fmulc |
|- ( ph -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |
28 |
27
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |
29 |
|
i1ff |
|- ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
30 |
28 29
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
31 |
30
|
frnd |
|- ( ( ph /\ A =/= 0 ) -> ran ( ( RR X. { A } ) oF x. F ) C_ RR ) |
32 |
31
|
ssdifssd |
|- ( ( ph /\ A =/= 0 ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR ) |
33 |
32
|
sselda |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m e. RR ) |
34 |
33
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m e. CC ) |
35 |
2
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> A e. RR ) |
36 |
35
|
recnd |
|- ( ( ph /\ A =/= 0 ) -> A e. CC ) |
37 |
36
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC ) |
38 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A =/= 0 ) |
39 |
34 37 38
|
divcan2d |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( A x. ( m / A ) ) = m ) |
40 |
1 2
|
i1fmulclem |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. RR ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) = ( `' F " { ( m / A ) } ) ) |
41 |
33 40
|
syldan |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) = ( `' F " { ( m / A ) } ) ) |
42 |
41
|
fveq2d |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) = ( vol ` ( `' F " { ( m / A ) } ) ) ) |
43 |
42
|
eqcomd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) = ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) |
44 |
39 43
|
oveq12d |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( A x. ( m / A ) ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) = ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) ) |
45 |
2
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. RR ) |
46 |
33 45 38
|
redivcld |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. RR ) |
47 |
46
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. CC ) |
48 |
1
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> F e. dom S.1 ) |
49 |
45
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC ) |
50 |
|
eldifsni |
|- ( m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> m =/= 0 ) |
51 |
50
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m =/= 0 ) |
52 |
34 49 51 38
|
divne0d |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) =/= 0 ) |
53 |
|
eldifsn |
|- ( ( m / A ) e. ( RR \ { 0 } ) <-> ( ( m / A ) e. RR /\ ( m / A ) =/= 0 ) ) |
54 |
46 52 53
|
sylanbrc |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. ( RR \ { 0 } ) ) |
55 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ ( m / A ) e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. RR ) |
56 |
48 54 55
|
syl2anc |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. RR ) |
57 |
56
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. CC ) |
58 |
37 47 57
|
mulassd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( A x. ( m / A ) ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) = ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
59 |
44 58
|
eqtr3d |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
60 |
59
|
sumeq2dv |
|- ( ( ph /\ A =/= 0 ) -> sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
61 |
|
i1frn |
|- ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ran ( ( RR X. { A } ) oF x. F ) e. Fin ) |
62 |
28 61
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ran ( ( RR X. { A } ) oF x. F ) e. Fin ) |
63 |
|
difss |
|- ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ ran ( ( RR X. { A } ) oF x. F ) |
64 |
|
ssfi |
|- ( ( ran ( ( RR X. { A } ) oF x. F ) e. Fin /\ ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ ran ( ( RR X. { A } ) oF x. F ) ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) e. Fin ) |
65 |
62 63 64
|
sylancl |
|- ( ( ph /\ A =/= 0 ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) e. Fin ) |
66 |
47 57
|
mulcld |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) e. CC ) |
67 |
65 36 66
|
fsummulc2 |
|- ( ( ph /\ A =/= 0 ) -> ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
68 |
60 67
|
eqtr4d |
|- ( ( ph /\ A =/= 0 ) -> sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
69 |
|
itg1val |
|- ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) ) |
70 |
28 69
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) ) |
71 |
1
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> F e. dom S.1 ) |
72 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
73 |
71 72
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
74 |
|
id |
|- ( k = ( m / A ) -> k = ( m / A ) ) |
75 |
|
sneq |
|- ( k = ( m / A ) -> { k } = { ( m / A ) } ) |
76 |
75
|
imaeq2d |
|- ( k = ( m / A ) -> ( `' F " { k } ) = ( `' F " { ( m / A ) } ) ) |
77 |
76
|
fveq2d |
|- ( k = ( m / A ) -> ( vol ` ( `' F " { k } ) ) = ( vol ` ( `' F " { ( m / A ) } ) ) ) |
78 |
74 77
|
oveq12d |
|- ( k = ( m / A ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) |
79 |
|
eqid |
|- ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) = ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) |
80 |
|
eldifi |
|- ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> n e. ran ( ( RR X. { A } ) oF x. F ) ) |
81 |
4
|
a1i |
|- ( ph -> RR e. _V ) |
82 |
7
|
ffnd |
|- ( ph -> F Fn RR ) |
83 |
|
eqidd |
|- ( ( ph /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) |
84 |
81 2 82 83
|
ofc1 |
|- ( ( ph /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) = ( A x. ( F ` y ) ) ) |
85 |
84
|
adantlr |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) = ( A x. ( F ` y ) ) ) |
86 |
85
|
oveq1d |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) = ( ( A x. ( F ` y ) ) / A ) ) |
87 |
7
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> F : RR --> RR ) |
88 |
87
|
ffvelrnda |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. RR ) |
89 |
88
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. CC ) |
90 |
36
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> A e. CC ) |
91 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> A =/= 0 ) |
92 |
89 90 91
|
divcan3d |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( A x. ( F ` y ) ) / A ) = ( F ` y ) ) |
93 |
86 92
|
eqtrd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) = ( F ` y ) ) |
94 |
87
|
ffnd |
|- ( ( ph /\ A =/= 0 ) -> F Fn RR ) |
95 |
|
fnfvelrn |
|- ( ( F Fn RR /\ y e. RR ) -> ( F ` y ) e. ran F ) |
96 |
94 95
|
sylan |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. ran F ) |
97 |
93 96
|
eqeltrd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) |
98 |
97
|
ralrimiva |
|- ( ( ph /\ A =/= 0 ) -> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) |
99 |
30
|
ffnd |
|- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) Fn RR ) |
100 |
|
oveq1 |
|- ( n = ( ( ( RR X. { A } ) oF x. F ) ` y ) -> ( n / A ) = ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) ) |
101 |
100
|
eleq1d |
|- ( n = ( ( ( RR X. { A } ) oF x. F ) ` y ) -> ( ( n / A ) e. ran F <-> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) ) |
102 |
101
|
ralrn |
|- ( ( ( RR X. { A } ) oF x. F ) Fn RR -> ( A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F <-> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) ) |
103 |
99 102
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F <-> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) ) |
104 |
98 103
|
mpbird |
|- ( ( ph /\ A =/= 0 ) -> A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F ) |
105 |
104
|
r19.21bi |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ran ( ( RR X. { A } ) oF x. F ) ) -> ( n / A ) e. ran F ) |
106 |
80 105
|
sylan2 |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) e. ran F ) |
107 |
32
|
sselda |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. RR ) |
108 |
107
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. CC ) |
109 |
36
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC ) |
110 |
|
eldifsni |
|- ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> n =/= 0 ) |
111 |
110
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n =/= 0 ) |
112 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A =/= 0 ) |
113 |
108 109 111 112
|
divne0d |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) =/= 0 ) |
114 |
|
eldifsn |
|- ( ( n / A ) e. ( ran F \ { 0 } ) <-> ( ( n / A ) e. ran F /\ ( n / A ) =/= 0 ) ) |
115 |
106 113 114
|
sylanbrc |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) e. ( ran F \ { 0 } ) ) |
116 |
|
eldifi |
|- ( k e. ( ran F \ { 0 } ) -> k e. ran F ) |
117 |
|
fnfvelrn |
|- ( ( ( ( RR X. { A } ) oF x. F ) Fn RR /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
118 |
99 117
|
sylan |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
119 |
85 118
|
eqeltrrd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
120 |
119
|
ralrimiva |
|- ( ( ph /\ A =/= 0 ) -> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
121 |
|
oveq2 |
|- ( k = ( F ` y ) -> ( A x. k ) = ( A x. ( F ` y ) ) ) |
122 |
121
|
eleq1d |
|- ( k = ( F ` y ) -> ( ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) ) |
123 |
122
|
ralrn |
|- ( F Fn RR -> ( A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) ) |
124 |
94 123
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) ) |
125 |
120 124
|
mpbird |
|- ( ( ph /\ A =/= 0 ) -> A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
126 |
125
|
r19.21bi |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ran F ) -> ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
127 |
116 126
|
sylan2 |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
128 |
36
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> A e. CC ) |
129 |
87
|
frnd |
|- ( ( ph /\ A =/= 0 ) -> ran F C_ RR ) |
130 |
129
|
ssdifssd |
|- ( ( ph /\ A =/= 0 ) -> ( ran F \ { 0 } ) C_ RR ) |
131 |
130
|
sselda |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) |
132 |
131
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) |
133 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> A =/= 0 ) |
134 |
|
eldifsni |
|- ( k e. ( ran F \ { 0 } ) -> k =/= 0 ) |
135 |
134
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k =/= 0 ) |
136 |
128 132 133 135
|
mulne0d |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) =/= 0 ) |
137 |
|
eldifsn |
|- ( ( A x. k ) e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) <-> ( ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) /\ ( A x. k ) =/= 0 ) ) |
138 |
127 136 137
|
sylanbrc |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) |
139 |
|
simpl |
|- ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) -> n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) |
140 |
|
ssel2 |
|- ( ( ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. RR ) |
141 |
32 139 140
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> n e. RR ) |
142 |
141
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> n e. CC ) |
143 |
2
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A e. RR ) |
144 |
143
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A e. CC ) |
145 |
131
|
adantrl |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> k e. RR ) |
146 |
145
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> k e. CC ) |
147 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A =/= 0 ) |
148 |
142 144 146 147
|
divmuld |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( ( n / A ) = k <-> ( A x. k ) = n ) ) |
149 |
148
|
bicomd |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( ( A x. k ) = n <-> ( n / A ) = k ) ) |
150 |
|
eqcom |
|- ( n = ( A x. k ) <-> ( A x. k ) = n ) |
151 |
|
eqcom |
|- ( k = ( n / A ) <-> ( n / A ) = k ) |
152 |
149 150 151
|
3bitr4g |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( n = ( A x. k ) <-> k = ( n / A ) ) ) |
153 |
79 115 138 152
|
f1o2d |
|- ( ( ph /\ A =/= 0 ) -> ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) : ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -1-1-onto-> ( ran F \ { 0 } ) ) |
154 |
|
oveq1 |
|- ( n = m -> ( n / A ) = ( m / A ) ) |
155 |
|
ovex |
|- ( m / A ) e. _V |
156 |
154 79 155
|
fvmpt |
|- ( m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) ` m ) = ( m / A ) ) |
157 |
156
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) ` m ) = ( m / A ) ) |
158 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
159 |
71 158
|
sylan |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
160 |
131 159
|
remulcld |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. RR ) |
161 |
160
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. CC ) |
162 |
78 65 153 157 161
|
fsumf1o |
|- ( ( ph /\ A =/= 0 ) -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) |
163 |
73 162
|
eqtrd |
|- ( ( ph /\ A =/= 0 ) -> ( S.1 ` F ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) |
164 |
163
|
oveq2d |
|- ( ( ph /\ A =/= 0 ) -> ( A x. ( S.1 ` F ) ) = ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
165 |
68 70 164
|
3eqtr4d |
|- ( ( ph /\ A =/= 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) ) |
166 |
26 165
|
pm2.61dane |
|- ( ph -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) ) |