| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F e. dom S.1 ) | 
						
							| 2 |  | simpr |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> G e. dom S.1 ) | 
						
							| 3 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 4 | 3 | a1i |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> -u 1 e. RR ) | 
						
							| 5 | 2 4 | i1fmulc |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( RR X. { -u 1 } ) oF x. G ) e. dom S.1 ) | 
						
							| 6 | 1 5 | itg1add |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( ( S.1 ` F ) + ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) ) ) | 
						
							| 7 | 2 4 | itg1mulc |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) = ( -u 1 x. ( S.1 ` G ) ) ) | 
						
							| 8 |  | itg1cl |  |-  ( G e. dom S.1 -> ( S.1 ` G ) e. RR ) | 
						
							| 9 | 8 | recnd |  |-  ( G e. dom S.1 -> ( S.1 ` G ) e. CC ) | 
						
							| 10 | 2 9 | syl |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` G ) e. CC ) | 
						
							| 11 | 10 | mulm1d |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( -u 1 x. ( S.1 ` G ) ) = -u ( S.1 ` G ) ) | 
						
							| 12 | 7 11 | eqtrd |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) = -u ( S.1 ` G ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( S.1 ` F ) + ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( ( S.1 ` F ) + -u ( S.1 ` G ) ) ) | 
						
							| 14 | 6 13 | eqtrd |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( ( S.1 ` F ) + -u ( S.1 ` G ) ) ) | 
						
							| 15 |  | reex |  |-  RR e. _V | 
						
							| 16 |  | i1ff |  |-  ( F e. dom S.1 -> F : RR --> RR ) | 
						
							| 17 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 18 |  | fss |  |-  ( ( F : RR --> RR /\ RR C_ CC ) -> F : RR --> CC ) | 
						
							| 19 | 16 17 18 | sylancl |  |-  ( F e. dom S.1 -> F : RR --> CC ) | 
						
							| 20 |  | i1ff |  |-  ( G e. dom S.1 -> G : RR --> RR ) | 
						
							| 21 |  | fss |  |-  ( ( G : RR --> RR /\ RR C_ CC ) -> G : RR --> CC ) | 
						
							| 22 | 20 17 21 | sylancl |  |-  ( G e. dom S.1 -> G : RR --> CC ) | 
						
							| 23 |  | ofnegsub |  |-  ( ( RR e. _V /\ F : RR --> CC /\ G : RR --> CC ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) | 
						
							| 24 | 15 19 22 23 | mp3an3an |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( S.1 ` ( F oF - G ) ) ) | 
						
							| 26 |  | itg1cl |  |-  ( F e. dom S.1 -> ( S.1 ` F ) e. RR ) | 
						
							| 27 | 26 | recnd |  |-  ( F e. dom S.1 -> ( S.1 ` F ) e. CC ) | 
						
							| 28 |  | negsub |  |-  ( ( ( S.1 ` F ) e. CC /\ ( S.1 ` G ) e. CC ) -> ( ( S.1 ` F ) + -u ( S.1 ` G ) ) = ( ( S.1 ` F ) - ( S.1 ` G ) ) ) | 
						
							| 29 | 27 9 28 | syl2an |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( S.1 ` F ) + -u ( S.1 ` G ) ) = ( ( S.1 ` F ) - ( S.1 ` G ) ) ) | 
						
							| 30 | 14 25 29 | 3eqtr3d |  |-  ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF - G ) ) = ( ( S.1 ` F ) - ( S.1 ` G ) ) ) |