Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F e. dom S.1 ) |
2 |
|
simpr |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> G e. dom S.1 ) |
3 |
|
neg1rr |
|- -u 1 e. RR |
4 |
3
|
a1i |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> -u 1 e. RR ) |
5 |
2 4
|
i1fmulc |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( RR X. { -u 1 } ) oF x. G ) e. dom S.1 ) |
6 |
1 5
|
itg1add |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( ( S.1 ` F ) + ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) ) ) |
7 |
2 4
|
itg1mulc |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) = ( -u 1 x. ( S.1 ` G ) ) ) |
8 |
|
itg1cl |
|- ( G e. dom S.1 -> ( S.1 ` G ) e. RR ) |
9 |
8
|
recnd |
|- ( G e. dom S.1 -> ( S.1 ` G ) e. CC ) |
10 |
2 9
|
syl |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` G ) e. CC ) |
11 |
10
|
mulm1d |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( -u 1 x. ( S.1 ` G ) ) = -u ( S.1 ` G ) ) |
12 |
7 11
|
eqtrd |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) = -u ( S.1 ` G ) ) |
13 |
12
|
oveq2d |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( S.1 ` F ) + ( S.1 ` ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( ( S.1 ` F ) + -u ( S.1 ` G ) ) ) |
14 |
6 13
|
eqtrd |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( ( S.1 ` F ) + -u ( S.1 ` G ) ) ) |
15 |
|
reex |
|- RR e. _V |
16 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
17 |
|
ax-resscn |
|- RR C_ CC |
18 |
|
fss |
|- ( ( F : RR --> RR /\ RR C_ CC ) -> F : RR --> CC ) |
19 |
16 17 18
|
sylancl |
|- ( F e. dom S.1 -> F : RR --> CC ) |
20 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
21 |
|
fss |
|- ( ( G : RR --> RR /\ RR C_ CC ) -> G : RR --> CC ) |
22 |
20 17 21
|
sylancl |
|- ( G e. dom S.1 -> G : RR --> CC ) |
23 |
|
ofnegsub |
|- ( ( RR e. _V /\ F : RR --> CC /\ G : RR --> CC ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
24 |
15 19 22 23
|
mp3an3an |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
25 |
24
|
fveq2d |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) ) = ( S.1 ` ( F oF - G ) ) ) |
26 |
|
itg1cl |
|- ( F e. dom S.1 -> ( S.1 ` F ) e. RR ) |
27 |
26
|
recnd |
|- ( F e. dom S.1 -> ( S.1 ` F ) e. CC ) |
28 |
|
negsub |
|- ( ( ( S.1 ` F ) e. CC /\ ( S.1 ` G ) e. CC ) -> ( ( S.1 ` F ) + -u ( S.1 ` G ) ) = ( ( S.1 ` F ) - ( S.1 ` G ) ) ) |
29 |
27 9 28
|
syl2an |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( S.1 ` F ) + -u ( S.1 ` G ) ) = ( ( S.1 ` F ) - ( S.1 ` G ) ) ) |
30 |
14 25 29
|
3eqtr3d |
|- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( S.1 ` ( F oF - G ) ) = ( ( S.1 ` F ) - ( S.1 ` G ) ) ) |