Step |
Hyp |
Ref |
Expression |
1 |
|
rneq |
|- ( f = F -> ran f = ran F ) |
2 |
1
|
difeq1d |
|- ( f = F -> ( ran f \ { 0 } ) = ( ran F \ { 0 } ) ) |
3 |
|
cnveq |
|- ( f = F -> `' f = `' F ) |
4 |
3
|
imaeq1d |
|- ( f = F -> ( `' f " { x } ) = ( `' F " { x } ) ) |
5 |
4
|
fveq2d |
|- ( f = F -> ( vol ` ( `' f " { x } ) ) = ( vol ` ( `' F " { x } ) ) ) |
6 |
5
|
oveq2d |
|- ( f = F -> ( x x. ( vol ` ( `' f " { x } ) ) ) = ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
7 |
6
|
adantr |
|- ( ( f = F /\ x e. ( ran f \ { 0 } ) ) -> ( x x. ( vol ` ( `' f " { x } ) ) ) = ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
8 |
2 7
|
sumeq12dv |
|- ( f = F -> sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
9 |
|
df-itg1 |
|- S.1 = ( f e. { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |-> sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) ) |
10 |
|
sumex |
|- sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) e. _V |
11 |
8 9 10
|
fvmpt |
|- ( F e. { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
12 |
|
sumex |
|- sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) e. _V |
13 |
12 9
|
dmmpti |
|- dom S.1 = { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |
14 |
11 13
|
eleq2s |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |