Step |
Hyp |
Ref |
Expression |
1 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
2 |
1
|
adantr |
|- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
3 |
|
simpr2 |
|- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> ( ran F \ { 0 } ) C_ A ) |
4 |
3
|
sselda |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( ran F \ { 0 } ) ) -> x e. A ) |
5 |
|
simpr3 |
|- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> A C_ ( RR \ { 0 } ) ) |
6 |
5
|
sselda |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. A ) -> x e. ( RR \ { 0 } ) ) |
7 |
|
eldifi |
|- ( x e. ( RR \ { 0 } ) -> x e. RR ) |
8 |
6 7
|
syl |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. A ) -> x e. RR ) |
9 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ x e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
10 |
9
|
adantlr |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
11 |
6 10
|
syldan |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. A ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
12 |
8 11
|
remulcld |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. A ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) e. RR ) |
13 |
12
|
recnd |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. A ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) e. CC ) |
14 |
4 13
|
syldan |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( ran F \ { 0 } ) ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) e. CC ) |
15 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
16 |
15
|
ad2antrr |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> F : RR --> RR ) |
17 |
|
ffrn |
|- ( F : RR --> RR -> F : RR --> ran F ) |
18 |
16 17
|
syl |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> F : RR --> ran F ) |
19 |
|
eldifn |
|- ( x e. ( A \ ( ran F \ { 0 } ) ) -> -. x e. ( ran F \ { 0 } ) ) |
20 |
19
|
adantl |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> -. x e. ( ran F \ { 0 } ) ) |
21 |
|
eldif |
|- ( x e. ( ran F \ { 0 } ) <-> ( x e. ran F /\ -. x e. { 0 } ) ) |
22 |
|
simplr3 |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> A C_ ( RR \ { 0 } ) ) |
23 |
22
|
ssdifssd |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( A \ ( ran F \ { 0 } ) ) C_ ( RR \ { 0 } ) ) |
24 |
|
simpr |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> x e. ( A \ ( ran F \ { 0 } ) ) ) |
25 |
23 24
|
sseldd |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> x e. ( RR \ { 0 } ) ) |
26 |
|
eldifn |
|- ( x e. ( RR \ { 0 } ) -> -. x e. { 0 } ) |
27 |
25 26
|
syl |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> -. x e. { 0 } ) |
28 |
27
|
biantrud |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( x e. ran F <-> ( x e. ran F /\ -. x e. { 0 } ) ) ) |
29 |
21 28
|
bitr4id |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( x e. ( ran F \ { 0 } ) <-> x e. ran F ) ) |
30 |
20 29
|
mtbid |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> -. x e. ran F ) |
31 |
|
disjsn |
|- ( ( ran F i^i { x } ) = (/) <-> -. x e. ran F ) |
32 |
30 31
|
sylibr |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( ran F i^i { x } ) = (/) ) |
33 |
|
fimacnvdisj |
|- ( ( F : RR --> ran F /\ ( ran F i^i { x } ) = (/) ) -> ( `' F " { x } ) = (/) ) |
34 |
18 32 33
|
syl2anc |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( `' F " { x } ) = (/) ) |
35 |
34
|
fveq2d |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( vol ` ( `' F " { x } ) ) = ( vol ` (/) ) ) |
36 |
|
0mbl |
|- (/) e. dom vol |
37 |
|
mblvol |
|- ( (/) e. dom vol -> ( vol ` (/) ) = ( vol* ` (/) ) ) |
38 |
36 37
|
ax-mp |
|- ( vol ` (/) ) = ( vol* ` (/) ) |
39 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
40 |
38 39
|
eqtri |
|- ( vol ` (/) ) = 0 |
41 |
35 40
|
eqtrdi |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( vol ` ( `' F " { x } ) ) = 0 ) |
42 |
41
|
oveq2d |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) = ( x x. 0 ) ) |
43 |
|
eldifi |
|- ( x e. ( A \ ( ran F \ { 0 } ) ) -> x e. A ) |
44 |
43 8
|
sylan2 |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> x e. RR ) |
45 |
44
|
recnd |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> x e. CC ) |
46 |
45
|
mul01d |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( x x. 0 ) = 0 ) |
47 |
42 46
|
eqtrd |
|- ( ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) /\ x e. ( A \ ( ran F \ { 0 } ) ) ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) = 0 ) |
48 |
|
simpr1 |
|- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> A e. Fin ) |
49 |
3 14 47 48
|
fsumss |
|- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) = sum_ x e. A ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
50 |
2 49
|
eqtrd |
|- ( ( F e. dom S.1 /\ ( A e. Fin /\ ( ran F \ { 0 } ) C_ A /\ A C_ ( RR \ { 0 } ) ) ) -> ( S.1 ` F ) = sum_ x e. A ( x x. ( vol ` ( `' F " { x } ) ) ) ) |