| Step | Hyp | Ref | Expression | 
						
							| 1 |  | i1f0 |  |-  ( RR X. { 0 } ) e. dom S.1 | 
						
							| 2 |  | reex |  |-  RR e. _V | 
						
							| 3 | 2 | a1i |  |-  ( T. -> RR e. _V ) | 
						
							| 4 |  | i1ff |  |-  ( ( RR X. { 0 } ) e. dom S.1 -> ( RR X. { 0 } ) : RR --> RR ) | 
						
							| 5 | 1 4 | mp1i |  |-  ( T. -> ( RR X. { 0 } ) : RR --> RR ) | 
						
							| 6 |  | leid |  |-  ( x e. RR -> x <_ x ) | 
						
							| 7 | 6 | adantl |  |-  ( ( T. /\ x e. RR ) -> x <_ x ) | 
						
							| 8 | 3 5 7 | caofref |  |-  ( T. -> ( RR X. { 0 } ) oR <_ ( RR X. { 0 } ) ) | 
						
							| 9 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 10 | 9 | a1i |  |-  ( T. -> RR C_ CC ) | 
						
							| 11 | 5 | ffnd |  |-  ( T. -> ( RR X. { 0 } ) Fn RR ) | 
						
							| 12 | 10 11 | 0pledm |  |-  ( T. -> ( 0p oR <_ ( RR X. { 0 } ) <-> ( RR X. { 0 } ) oR <_ ( RR X. { 0 } ) ) ) | 
						
							| 13 | 8 12 | mpbird |  |-  ( T. -> 0p oR <_ ( RR X. { 0 } ) ) | 
						
							| 14 | 13 | mptru |  |-  0p oR <_ ( RR X. { 0 } ) | 
						
							| 15 |  | itg2itg1 |  |-  ( ( ( RR X. { 0 } ) e. dom S.1 /\ 0p oR <_ ( RR X. { 0 } ) ) -> ( S.2 ` ( RR X. { 0 } ) ) = ( S.1 ` ( RR X. { 0 } ) ) ) | 
						
							| 16 | 1 14 15 | mp2an |  |-  ( S.2 ` ( RR X. { 0 } ) ) = ( S.1 ` ( RR X. { 0 } ) ) | 
						
							| 17 |  | itg10 |  |-  ( S.1 ` ( RR X. { 0 } ) ) = 0 | 
						
							| 18 | 16 17 | eqtri |  |-  ( S.2 ` ( RR X. { 0 } ) ) = 0 |