| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2add.f1 |  |-  ( ph -> F e. MblFn ) | 
						
							| 2 |  | itg2add.f2 |  |-  ( ph -> F : RR --> ( 0 [,) +oo ) ) | 
						
							| 3 |  | itg2add.f3 |  |-  ( ph -> ( S.2 ` F ) e. RR ) | 
						
							| 4 |  | itg2add.g1 |  |-  ( ph -> G e. MblFn ) | 
						
							| 5 |  | itg2add.g2 |  |-  ( ph -> G : RR --> ( 0 [,) +oo ) ) | 
						
							| 6 |  | itg2add.g3 |  |-  ( ph -> ( S.2 ` G ) e. RR ) | 
						
							| 7 |  | itg2add.p1 |  |-  ( ph -> P : NN --> dom S.1 ) | 
						
							| 8 |  | itg2add.p2 |  |-  ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) | 
						
							| 9 |  | itg2add.p3 |  |-  ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) | 
						
							| 10 |  | itg2add.q1 |  |-  ( ph -> Q : NN --> dom S.1 ) | 
						
							| 11 |  | itg2add.q2 |  |-  ( ph -> A. n e. NN ( 0p oR <_ ( Q ` n ) /\ ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) ) ) | 
						
							| 12 |  | itg2add.q3 |  |-  ( ph -> A. x e. RR ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) ) | 
						
							| 13 | 1 4 | mbfadd |  |-  ( ph -> ( F oF + G ) e. MblFn ) | 
						
							| 14 |  | ge0addcl |  |-  ( ( y e. ( 0 [,) +oo ) /\ z e. ( 0 [,) +oo ) ) -> ( y + z ) e. ( 0 [,) +oo ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ ( y e. ( 0 [,) +oo ) /\ z e. ( 0 [,) +oo ) ) ) -> ( y + z ) e. ( 0 [,) +oo ) ) | 
						
							| 16 |  | reex |  |-  RR e. _V | 
						
							| 17 | 16 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 18 |  | inidm |  |-  ( RR i^i RR ) = RR | 
						
							| 19 | 15 2 5 17 17 18 | off |  |-  ( ph -> ( F oF + G ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 20 |  | simpl |  |-  ( ( f e. dom S.1 /\ g e. dom S.1 ) -> f e. dom S.1 ) | 
						
							| 21 |  | simpr |  |-  ( ( f e. dom S.1 /\ g e. dom S.1 ) -> g e. dom S.1 ) | 
						
							| 22 | 20 21 | i1fadd |  |-  ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( f oF + g ) e. dom S.1 ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( f oF + g ) e. dom S.1 ) | 
						
							| 24 |  | nnex |  |-  NN e. _V | 
						
							| 25 | 24 | a1i |  |-  ( ph -> NN e. _V ) | 
						
							| 26 |  | inidm |  |-  ( NN i^i NN ) = NN | 
						
							| 27 | 23 7 10 25 25 26 | off |  |-  ( ph -> ( P oF oF + Q ) : NN --> dom S.1 ) | 
						
							| 28 |  | ge0addcl |  |-  ( ( f e. ( 0 [,) +oo ) /\ g e. ( 0 [,) +oo ) ) -> ( f + g ) e. ( 0 [,) +oo ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( ph /\ m e. NN ) /\ ( f e. ( 0 [,) +oo ) /\ g e. ( 0 [,) +oo ) ) ) -> ( f + g ) e. ( 0 [,) +oo ) ) | 
						
							| 30 | 7 | ffvelcdmda |  |-  ( ( ph /\ m e. NN ) -> ( P ` m ) e. dom S.1 ) | 
						
							| 31 |  | fveq2 |  |-  ( n = m -> ( P ` n ) = ( P ` m ) ) | 
						
							| 32 | 31 | breq2d |  |-  ( n = m -> ( 0p oR <_ ( P ` n ) <-> 0p oR <_ ( P ` m ) ) ) | 
						
							| 33 |  | fvoveq1 |  |-  ( n = m -> ( P ` ( n + 1 ) ) = ( P ` ( m + 1 ) ) ) | 
						
							| 34 | 31 33 | breq12d |  |-  ( n = m -> ( ( P ` n ) oR <_ ( P ` ( n + 1 ) ) <-> ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) | 
						
							| 35 | 32 34 | anbi12d |  |-  ( n = m -> ( ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) <-> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) ) | 
						
							| 36 | 35 | rspccva |  |-  ( ( A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) /\ m e. NN ) -> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) | 
						
							| 37 | 8 36 | sylan |  |-  ( ( ph /\ m e. NN ) -> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) | 
						
							| 38 | 37 | simpld |  |-  ( ( ph /\ m e. NN ) -> 0p oR <_ ( P ` m ) ) | 
						
							| 39 |  | breq2 |  |-  ( f = ( P ` m ) -> ( 0p oR <_ f <-> 0p oR <_ ( P ` m ) ) ) | 
						
							| 40 |  | feq1 |  |-  ( f = ( P ` m ) -> ( f : RR --> ( 0 [,) +oo ) <-> ( P ` m ) : RR --> ( 0 [,) +oo ) ) ) | 
						
							| 41 | 39 40 | imbi12d |  |-  ( f = ( P ` m ) -> ( ( 0p oR <_ f -> f : RR --> ( 0 [,) +oo ) ) <-> ( 0p oR <_ ( P ` m ) -> ( P ` m ) : RR --> ( 0 [,) +oo ) ) ) ) | 
						
							| 42 |  | i1ff |  |-  ( f e. dom S.1 -> f : RR --> RR ) | 
						
							| 43 | 42 | ffnd |  |-  ( f e. dom S.1 -> f Fn RR ) | 
						
							| 44 | 43 | adantr |  |-  ( ( f e. dom S.1 /\ 0p oR <_ f ) -> f Fn RR ) | 
						
							| 45 |  | 0cn |  |-  0 e. CC | 
						
							| 46 |  | fnconstg |  |-  ( 0 e. CC -> ( CC X. { 0 } ) Fn CC ) | 
						
							| 47 | 45 46 | ax-mp |  |-  ( CC X. { 0 } ) Fn CC | 
						
							| 48 |  | df-0p |  |-  0p = ( CC X. { 0 } ) | 
						
							| 49 | 48 | fneq1i |  |-  ( 0p Fn CC <-> ( CC X. { 0 } ) Fn CC ) | 
						
							| 50 | 47 49 | mpbir |  |-  0p Fn CC | 
						
							| 51 | 50 | a1i |  |-  ( f e. dom S.1 -> 0p Fn CC ) | 
						
							| 52 |  | cnex |  |-  CC e. _V | 
						
							| 53 | 52 | a1i |  |-  ( f e. dom S.1 -> CC e. _V ) | 
						
							| 54 | 16 | a1i |  |-  ( f e. dom S.1 -> RR e. _V ) | 
						
							| 55 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 56 |  | sseqin2 |  |-  ( RR C_ CC <-> ( CC i^i RR ) = RR ) | 
						
							| 57 | 55 56 | mpbi |  |-  ( CC i^i RR ) = RR | 
						
							| 58 |  | 0pval |  |-  ( x e. CC -> ( 0p ` x ) = 0 ) | 
						
							| 59 | 58 | adantl |  |-  ( ( f e. dom S.1 /\ x e. CC ) -> ( 0p ` x ) = 0 ) | 
						
							| 60 |  | eqidd |  |-  ( ( f e. dom S.1 /\ x e. RR ) -> ( f ` x ) = ( f ` x ) ) | 
						
							| 61 | 51 43 53 54 57 59 60 | ofrfval |  |-  ( f e. dom S.1 -> ( 0p oR <_ f <-> A. x e. RR 0 <_ ( f ` x ) ) ) | 
						
							| 62 | 61 | biimpa |  |-  ( ( f e. dom S.1 /\ 0p oR <_ f ) -> A. x e. RR 0 <_ ( f ` x ) ) | 
						
							| 63 | 42 | ffvelcdmda |  |-  ( ( f e. dom S.1 /\ x e. RR ) -> ( f ` x ) e. RR ) | 
						
							| 64 |  | elrege0 |  |-  ( ( f ` x ) e. ( 0 [,) +oo ) <-> ( ( f ` x ) e. RR /\ 0 <_ ( f ` x ) ) ) | 
						
							| 65 | 64 | simplbi2 |  |-  ( ( f ` x ) e. RR -> ( 0 <_ ( f ` x ) -> ( f ` x ) e. ( 0 [,) +oo ) ) ) | 
						
							| 66 | 63 65 | syl |  |-  ( ( f e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( f ` x ) -> ( f ` x ) e. ( 0 [,) +oo ) ) ) | 
						
							| 67 | 66 | ralimdva |  |-  ( f e. dom S.1 -> ( A. x e. RR 0 <_ ( f ` x ) -> A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) ) | 
						
							| 68 | 67 | imp |  |-  ( ( f e. dom S.1 /\ A. x e. RR 0 <_ ( f ` x ) ) -> A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) | 
						
							| 69 | 62 68 | syldan |  |-  ( ( f e. dom S.1 /\ 0p oR <_ f ) -> A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) | 
						
							| 70 |  | ffnfv |  |-  ( f : RR --> ( 0 [,) +oo ) <-> ( f Fn RR /\ A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) ) | 
						
							| 71 | 44 69 70 | sylanbrc |  |-  ( ( f e. dom S.1 /\ 0p oR <_ f ) -> f : RR --> ( 0 [,) +oo ) ) | 
						
							| 72 | 71 | ex |  |-  ( f e. dom S.1 -> ( 0p oR <_ f -> f : RR --> ( 0 [,) +oo ) ) ) | 
						
							| 73 | 41 72 | vtoclga |  |-  ( ( P ` m ) e. dom S.1 -> ( 0p oR <_ ( P ` m ) -> ( P ` m ) : RR --> ( 0 [,) +oo ) ) ) | 
						
							| 74 | 30 38 73 | sylc |  |-  ( ( ph /\ m e. NN ) -> ( P ` m ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 75 | 10 | ffvelcdmda |  |-  ( ( ph /\ m e. NN ) -> ( Q ` m ) e. dom S.1 ) | 
						
							| 76 |  | fveq2 |  |-  ( n = m -> ( Q ` n ) = ( Q ` m ) ) | 
						
							| 77 | 76 | breq2d |  |-  ( n = m -> ( 0p oR <_ ( Q ` n ) <-> 0p oR <_ ( Q ` m ) ) ) | 
						
							| 78 |  | fvoveq1 |  |-  ( n = m -> ( Q ` ( n + 1 ) ) = ( Q ` ( m + 1 ) ) ) | 
						
							| 79 | 76 78 | breq12d |  |-  ( n = m -> ( ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) <-> ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) | 
						
							| 80 | 77 79 | anbi12d |  |-  ( n = m -> ( ( 0p oR <_ ( Q ` n ) /\ ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) ) <-> ( 0p oR <_ ( Q ` m ) /\ ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) ) | 
						
							| 81 | 80 | rspccva |  |-  ( ( A. n e. NN ( 0p oR <_ ( Q ` n ) /\ ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) ) /\ m e. NN ) -> ( 0p oR <_ ( Q ` m ) /\ ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) | 
						
							| 82 | 11 81 | sylan |  |-  ( ( ph /\ m e. NN ) -> ( 0p oR <_ ( Q ` m ) /\ ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) | 
						
							| 83 | 82 | simpld |  |-  ( ( ph /\ m e. NN ) -> 0p oR <_ ( Q ` m ) ) | 
						
							| 84 |  | breq2 |  |-  ( f = ( Q ` m ) -> ( 0p oR <_ f <-> 0p oR <_ ( Q ` m ) ) ) | 
						
							| 85 |  | feq1 |  |-  ( f = ( Q ` m ) -> ( f : RR --> ( 0 [,) +oo ) <-> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) ) | 
						
							| 86 | 84 85 | imbi12d |  |-  ( f = ( Q ` m ) -> ( ( 0p oR <_ f -> f : RR --> ( 0 [,) +oo ) ) <-> ( 0p oR <_ ( Q ` m ) -> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) ) ) | 
						
							| 87 | 86 72 | vtoclga |  |-  ( ( Q ` m ) e. dom S.1 -> ( 0p oR <_ ( Q ` m ) -> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) ) | 
						
							| 88 | 75 83 87 | sylc |  |-  ( ( ph /\ m e. NN ) -> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 89 | 16 | a1i |  |-  ( ( ph /\ m e. NN ) -> RR e. _V ) | 
						
							| 90 | 29 74 88 89 89 18 | off |  |-  ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 91 |  | 0plef |  |-  ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> ( 0 [,) +oo ) <-> ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR /\ 0p oR <_ ( ( P ` m ) oF + ( Q ` m ) ) ) ) | 
						
							| 92 | 90 91 | sylib |  |-  ( ( ph /\ m e. NN ) -> ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR /\ 0p oR <_ ( ( P ` m ) oF + ( Q ` m ) ) ) ) | 
						
							| 93 | 92 | simprd |  |-  ( ( ph /\ m e. NN ) -> 0p oR <_ ( ( P ` m ) oF + ( Q ` m ) ) ) | 
						
							| 94 | 7 | ffnd |  |-  ( ph -> P Fn NN ) | 
						
							| 95 | 10 | ffnd |  |-  ( ph -> Q Fn NN ) | 
						
							| 96 |  | eqidd |  |-  ( ( ph /\ m e. NN ) -> ( P ` m ) = ( P ` m ) ) | 
						
							| 97 |  | eqidd |  |-  ( ( ph /\ m e. NN ) -> ( Q ` m ) = ( Q ` m ) ) | 
						
							| 98 | 94 95 25 25 26 96 97 | ofval |  |-  ( ( ph /\ m e. NN ) -> ( ( P oF oF + Q ) ` m ) = ( ( P ` m ) oF + ( Q ` m ) ) ) | 
						
							| 99 | 93 98 | breqtrrd |  |-  ( ( ph /\ m e. NN ) -> 0p oR <_ ( ( P oF oF + Q ) ` m ) ) | 
						
							| 100 |  | i1ff |  |-  ( ( P ` m ) e. dom S.1 -> ( P ` m ) : RR --> RR ) | 
						
							| 101 | 30 100 | syl |  |-  ( ( ph /\ m e. NN ) -> ( P ` m ) : RR --> RR ) | 
						
							| 102 | 101 | ffvelcdmda |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) e. RR ) | 
						
							| 103 |  | i1ff |  |-  ( ( Q ` m ) e. dom S.1 -> ( Q ` m ) : RR --> RR ) | 
						
							| 104 | 75 103 | syl |  |-  ( ( ph /\ m e. NN ) -> ( Q ` m ) : RR --> RR ) | 
						
							| 105 | 104 | ffvelcdmda |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` m ) ` y ) e. RR ) | 
						
							| 106 |  | peano2nn |  |-  ( m e. NN -> ( m + 1 ) e. NN ) | 
						
							| 107 |  | ffvelcdm |  |-  ( ( P : NN --> dom S.1 /\ ( m + 1 ) e. NN ) -> ( P ` ( m + 1 ) ) e. dom S.1 ) | 
						
							| 108 | 7 106 107 | syl2an |  |-  ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) e. dom S.1 ) | 
						
							| 109 |  | i1ff |  |-  ( ( P ` ( m + 1 ) ) e. dom S.1 -> ( P ` ( m + 1 ) ) : RR --> RR ) | 
						
							| 110 | 108 109 | syl |  |-  ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) : RR --> RR ) | 
						
							| 111 | 110 | ffvelcdmda |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` ( m + 1 ) ) ` y ) e. RR ) | 
						
							| 112 |  | ffvelcdm |  |-  ( ( Q : NN --> dom S.1 /\ ( m + 1 ) e. NN ) -> ( Q ` ( m + 1 ) ) e. dom S.1 ) | 
						
							| 113 | 10 106 112 | syl2an |  |-  ( ( ph /\ m e. NN ) -> ( Q ` ( m + 1 ) ) e. dom S.1 ) | 
						
							| 114 |  | i1ff |  |-  ( ( Q ` ( m + 1 ) ) e. dom S.1 -> ( Q ` ( m + 1 ) ) : RR --> RR ) | 
						
							| 115 | 113 114 | syl |  |-  ( ( ph /\ m e. NN ) -> ( Q ` ( m + 1 ) ) : RR --> RR ) | 
						
							| 116 | 115 | ffvelcdmda |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` ( m + 1 ) ) ` y ) e. RR ) | 
						
							| 117 | 37 | simprd |  |-  ( ( ph /\ m e. NN ) -> ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) | 
						
							| 118 | 101 | ffnd |  |-  ( ( ph /\ m e. NN ) -> ( P ` m ) Fn RR ) | 
						
							| 119 | 110 | ffnd |  |-  ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) Fn RR ) | 
						
							| 120 |  | eqidd |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) = ( ( P ` m ) ` y ) ) | 
						
							| 121 |  | eqidd |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` ( m + 1 ) ) ` y ) = ( ( P ` ( m + 1 ) ) ` y ) ) | 
						
							| 122 | 118 119 89 89 18 120 121 | ofrfval |  |-  ( ( ph /\ m e. NN ) -> ( ( P ` m ) oR <_ ( P ` ( m + 1 ) ) <-> A. y e. RR ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) ) | 
						
							| 123 | 117 122 | mpbid |  |-  ( ( ph /\ m e. NN ) -> A. y e. RR ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) | 
						
							| 124 | 123 | r19.21bi |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) | 
						
							| 125 | 82 | simprd |  |-  ( ( ph /\ m e. NN ) -> ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) | 
						
							| 126 | 104 | ffnd |  |-  ( ( ph /\ m e. NN ) -> ( Q ` m ) Fn RR ) | 
						
							| 127 | 115 | ffnd |  |-  ( ( ph /\ m e. NN ) -> ( Q ` ( m + 1 ) ) Fn RR ) | 
						
							| 128 |  | eqidd |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` m ) ` y ) = ( ( Q ` m ) ` y ) ) | 
						
							| 129 |  | eqidd |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` ( m + 1 ) ) ` y ) = ( ( Q ` ( m + 1 ) ) ` y ) ) | 
						
							| 130 | 126 127 89 89 18 128 129 | ofrfval |  |-  ( ( ph /\ m e. NN ) -> ( ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) <-> A. y e. RR ( ( Q ` m ) ` y ) <_ ( ( Q ` ( m + 1 ) ) ` y ) ) ) | 
						
							| 131 | 125 130 | mpbid |  |-  ( ( ph /\ m e. NN ) -> A. y e. RR ( ( Q ` m ) ` y ) <_ ( ( Q ` ( m + 1 ) ) ` y ) ) | 
						
							| 132 | 131 | r19.21bi |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` m ) ` y ) <_ ( ( Q ` ( m + 1 ) ) ` y ) ) | 
						
							| 133 | 102 105 111 116 124 132 | le2addd |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) <_ ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) | 
						
							| 134 | 133 | ralrimiva |  |-  ( ( ph /\ m e. NN ) -> A. y e. RR ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) <_ ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) | 
						
							| 135 | 30 75 | i1fadd |  |-  ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) e. dom S.1 ) | 
						
							| 136 |  | i1ff |  |-  ( ( ( P ` m ) oF + ( Q ` m ) ) e. dom S.1 -> ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR ) | 
						
							| 137 |  | ffn |  |-  ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR -> ( ( P ` m ) oF + ( Q ` m ) ) Fn RR ) | 
						
							| 138 | 135 136 137 | 3syl |  |-  ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) Fn RR ) | 
						
							| 139 | 108 113 | i1fadd |  |-  ( ( ph /\ m e. NN ) -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) e. dom S.1 ) | 
						
							| 140 |  | i1ff |  |-  ( ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) e. dom S.1 -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) : RR --> RR ) | 
						
							| 141 | 139 140 | syl |  |-  ( ( ph /\ m e. NN ) -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) : RR --> RR ) | 
						
							| 142 | 141 | ffnd |  |-  ( ( ph /\ m e. NN ) -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) Fn RR ) | 
						
							| 143 | 118 126 89 89 18 120 128 | ofval |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P ` m ) oF + ( Q ` m ) ) ` y ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) | 
						
							| 144 | 119 127 89 89 18 121 129 | ofval |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ` y ) = ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) | 
						
							| 145 | 138 142 89 89 18 143 144 | ofrfval |  |-  ( ( ph /\ m e. NN ) -> ( ( ( P ` m ) oF + ( Q ` m ) ) oR <_ ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) <-> A. y e. RR ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) <_ ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) ) | 
						
							| 146 | 134 145 | mpbird |  |-  ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) oR <_ ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ) | 
						
							| 147 |  | eqidd |  |-  ( ( ph /\ ( m + 1 ) e. NN ) -> ( P ` ( m + 1 ) ) = ( P ` ( m + 1 ) ) ) | 
						
							| 148 |  | eqidd |  |-  ( ( ph /\ ( m + 1 ) e. NN ) -> ( Q ` ( m + 1 ) ) = ( Q ` ( m + 1 ) ) ) | 
						
							| 149 | 94 95 25 25 26 147 148 | ofval |  |-  ( ( ph /\ ( m + 1 ) e. NN ) -> ( ( P oF oF + Q ) ` ( m + 1 ) ) = ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ) | 
						
							| 150 | 106 149 | sylan2 |  |-  ( ( ph /\ m e. NN ) -> ( ( P oF oF + Q ) ` ( m + 1 ) ) = ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ) | 
						
							| 151 | 146 98 150 | 3brtr4d |  |-  ( ( ph /\ m e. NN ) -> ( ( P oF oF + Q ) ` m ) oR <_ ( ( P oF oF + Q ) ` ( m + 1 ) ) ) | 
						
							| 152 | 99 151 | jca |  |-  ( ( ph /\ m e. NN ) -> ( 0p oR <_ ( ( P oF oF + Q ) ` m ) /\ ( ( P oF oF + Q ) ` m ) oR <_ ( ( P oF oF + Q ) ` ( m + 1 ) ) ) ) | 
						
							| 153 | 152 | ralrimiva |  |-  ( ph -> A. m e. NN ( 0p oR <_ ( ( P oF oF + Q ) ` m ) /\ ( ( P oF oF + Q ) ` m ) oR <_ ( ( P oF oF + Q ) ` ( m + 1 ) ) ) ) | 
						
							| 154 |  | fveq2 |  |-  ( n = m -> ( ( P oF oF + Q ) ` n ) = ( ( P oF oF + Q ) ` m ) ) | 
						
							| 155 | 154 | fveq1d |  |-  ( n = m -> ( ( ( P oF oF + Q ) ` n ) ` y ) = ( ( ( P oF oF + Q ) ` m ) ` y ) ) | 
						
							| 156 | 155 | cbvmptv |  |-  ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) = ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) | 
						
							| 157 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 158 |  | 1zzd |  |-  ( ( ph /\ y e. RR ) -> 1 e. ZZ ) | 
						
							| 159 |  | fveq2 |  |-  ( x = y -> ( ( P ` n ) ` x ) = ( ( P ` n ) ` y ) ) | 
						
							| 160 | 159 | mpteq2dv |  |-  ( x = y -> ( n e. NN |-> ( ( P ` n ) ` x ) ) = ( n e. NN |-> ( ( P ` n ) ` y ) ) ) | 
						
							| 161 |  | fveq2 |  |-  ( x = y -> ( F ` x ) = ( F ` y ) ) | 
						
							| 162 | 160 161 | breq12d |  |-  ( x = y -> ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) <-> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) ) | 
						
							| 163 | 162 | rspccva |  |-  ( ( A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) | 
						
							| 164 | 9 163 | sylan |  |-  ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) | 
						
							| 165 | 24 | mptex |  |-  ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) e. _V | 
						
							| 166 | 165 | a1i |  |-  ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) e. _V ) | 
						
							| 167 |  | fveq2 |  |-  ( x = y -> ( ( Q ` n ) ` x ) = ( ( Q ` n ) ` y ) ) | 
						
							| 168 | 167 | mpteq2dv |  |-  ( x = y -> ( n e. NN |-> ( ( Q ` n ) ` x ) ) = ( n e. NN |-> ( ( Q ` n ) ` y ) ) ) | 
						
							| 169 |  | fveq2 |  |-  ( x = y -> ( G ` x ) = ( G ` y ) ) | 
						
							| 170 | 168 169 | breq12d |  |-  ( x = y -> ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) <-> ( n e. NN |-> ( ( Q ` n ) ` y ) ) ~~> ( G ` y ) ) ) | 
						
							| 171 | 170 | rspccva |  |-  ( ( A. x e. RR ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) /\ y e. RR ) -> ( n e. NN |-> ( ( Q ` n ) ` y ) ) ~~> ( G ` y ) ) | 
						
							| 172 | 12 171 | sylan |  |-  ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( Q ` n ) ` y ) ) ~~> ( G ` y ) ) | 
						
							| 173 | 31 | fveq1d |  |-  ( n = m -> ( ( P ` n ) ` y ) = ( ( P ` m ) ` y ) ) | 
						
							| 174 |  | eqid |  |-  ( n e. NN |-> ( ( P ` n ) ` y ) ) = ( n e. NN |-> ( ( P ` n ) ` y ) ) | 
						
							| 175 |  | fvex |  |-  ( ( P ` m ) ` y ) e. _V | 
						
							| 176 | 173 174 175 | fvmpt |  |-  ( m e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) = ( ( P ` m ) ` y ) ) | 
						
							| 177 | 176 | adantl |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) = ( ( P ` m ) ` y ) ) | 
						
							| 178 | 102 | an32s |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( P ` m ) ` y ) e. RR ) | 
						
							| 179 | 177 178 | eqeltrd |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) e. RR ) | 
						
							| 180 | 179 | recnd |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) e. CC ) | 
						
							| 181 | 76 | fveq1d |  |-  ( n = m -> ( ( Q ` n ) ` y ) = ( ( Q ` m ) ` y ) ) | 
						
							| 182 |  | eqid |  |-  ( n e. NN |-> ( ( Q ` n ) ` y ) ) = ( n e. NN |-> ( ( Q ` n ) ` y ) ) | 
						
							| 183 |  | fvex |  |-  ( ( Q ` m ) ` y ) e. _V | 
						
							| 184 | 181 182 183 | fvmpt |  |-  ( m e. NN -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) = ( ( Q ` m ) ` y ) ) | 
						
							| 185 | 184 | adantl |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) = ( ( Q ` m ) ` y ) ) | 
						
							| 186 | 105 | an32s |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( Q ` m ) ` y ) e. RR ) | 
						
							| 187 | 185 186 | eqeltrd |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) e. RR ) | 
						
							| 188 | 187 | recnd |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) e. CC ) | 
						
							| 189 | 98 | fveq1d |  |-  ( ( ph /\ m e. NN ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) oF + ( Q ` m ) ) ` y ) ) | 
						
							| 190 | 189 | adantr |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) oF + ( Q ` m ) ) ` y ) ) | 
						
							| 191 | 190 143 | eqtrd |  |-  ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) | 
						
							| 192 | 191 | an32s |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) | 
						
							| 193 |  | eqid |  |-  ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) = ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) | 
						
							| 194 |  | fvex |  |-  ( ( ( P oF oF + Q ) ` m ) ` y ) e. _V | 
						
							| 195 | 155 193 194 | fvmpt |  |-  ( m e. NN -> ( ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ` m ) = ( ( ( P oF oF + Q ) ` m ) ` y ) ) | 
						
							| 196 | 195 | adantl |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ` m ) = ( ( ( P oF oF + Q ) ` m ) ` y ) ) | 
						
							| 197 | 177 185 | oveq12d |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) + ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) | 
						
							| 198 | 192 196 197 | 3eqtr4d |  |-  ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ` m ) = ( ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) + ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) ) ) | 
						
							| 199 | 157 158 164 166 172 180 188 198 | climadd |  |-  ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ~~> ( ( F ` y ) + ( G ` y ) ) ) | 
						
							| 200 | 156 199 | eqbrtrrid |  |-  ( ( ph /\ y e. RR ) -> ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) ~~> ( ( F ` y ) + ( G ` y ) ) ) | 
						
							| 201 | 2 | ffnd |  |-  ( ph -> F Fn RR ) | 
						
							| 202 | 5 | ffnd |  |-  ( ph -> G Fn RR ) | 
						
							| 203 |  | eqidd |  |-  ( ( ph /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) | 
						
							| 204 |  | eqidd |  |-  ( ( ph /\ y e. RR ) -> ( G ` y ) = ( G ` y ) ) | 
						
							| 205 | 201 202 17 17 18 203 204 | ofval |  |-  ( ( ph /\ y e. RR ) -> ( ( F oF + G ) ` y ) = ( ( F ` y ) + ( G ` y ) ) ) | 
						
							| 206 | 200 205 | breqtrrd |  |-  ( ( ph /\ y e. RR ) -> ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) ~~> ( ( F oF + G ) ` y ) ) | 
						
							| 207 | 206 | ralrimiva |  |-  ( ph -> A. y e. RR ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) ~~> ( ( F oF + G ) ` y ) ) | 
						
							| 208 |  | 2fveq3 |  |-  ( n = j -> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) = ( S.1 ` ( ( P oF oF + Q ) ` j ) ) ) | 
						
							| 209 | 208 | cbvmptv |  |-  ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) = ( j e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` j ) ) ) | 
						
							| 210 | 3 6 | readdcld |  |-  ( ph -> ( ( S.2 ` F ) + ( S.2 ` G ) ) e. RR ) | 
						
							| 211 | 98 | fveq2d |  |-  ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) = ( S.1 ` ( ( P ` m ) oF + ( Q ` m ) ) ) ) | 
						
							| 212 | 30 75 | itg1add |  |-  ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P ` m ) oF + ( Q ` m ) ) ) = ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) ) | 
						
							| 213 | 211 212 | eqtrd |  |-  ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) = ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) ) | 
						
							| 214 |  | itg1cl |  |-  ( ( P ` m ) e. dom S.1 -> ( S.1 ` ( P ` m ) ) e. RR ) | 
						
							| 215 | 30 214 | syl |  |-  ( ( ph /\ m e. NN ) -> ( S.1 ` ( P ` m ) ) e. RR ) | 
						
							| 216 |  | itg1cl |  |-  ( ( Q ` m ) e. dom S.1 -> ( S.1 ` ( Q ` m ) ) e. RR ) | 
						
							| 217 | 75 216 | syl |  |-  ( ( ph /\ m e. NN ) -> ( S.1 ` ( Q ` m ) ) e. RR ) | 
						
							| 218 | 3 | adantr |  |-  ( ( ph /\ m e. NN ) -> ( S.2 ` F ) e. RR ) | 
						
							| 219 | 6 | adantr |  |-  ( ( ph /\ m e. NN ) -> ( S.2 ` G ) e. RR ) | 
						
							| 220 | 2 | adantr |  |-  ( ( ph /\ m e. NN ) -> F : RR --> ( 0 [,) +oo ) ) | 
						
							| 221 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 222 |  | fss |  |-  ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : RR --> ( 0 [,] +oo ) ) | 
						
							| 223 | 220 221 222 | sylancl |  |-  ( ( ph /\ m e. NN ) -> F : RR --> ( 0 [,] +oo ) ) | 
						
							| 224 | 1 2 7 8 9 | itg2i1fseqle |  |-  ( ( ph /\ m e. NN ) -> ( P ` m ) oR <_ F ) | 
						
							| 225 |  | itg2ub |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( P ` m ) e. dom S.1 /\ ( P ` m ) oR <_ F ) -> ( S.1 ` ( P ` m ) ) <_ ( S.2 ` F ) ) | 
						
							| 226 | 223 30 224 225 | syl3anc |  |-  ( ( ph /\ m e. NN ) -> ( S.1 ` ( P ` m ) ) <_ ( S.2 ` F ) ) | 
						
							| 227 | 5 | adantr |  |-  ( ( ph /\ m e. NN ) -> G : RR --> ( 0 [,) +oo ) ) | 
						
							| 228 |  | fss |  |-  ( ( G : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> G : RR --> ( 0 [,] +oo ) ) | 
						
							| 229 | 227 221 228 | sylancl |  |-  ( ( ph /\ m e. NN ) -> G : RR --> ( 0 [,] +oo ) ) | 
						
							| 230 | 4 5 10 11 12 | itg2i1fseqle |  |-  ( ( ph /\ m e. NN ) -> ( Q ` m ) oR <_ G ) | 
						
							| 231 |  | itg2ub |  |-  ( ( G : RR --> ( 0 [,] +oo ) /\ ( Q ` m ) e. dom S.1 /\ ( Q ` m ) oR <_ G ) -> ( S.1 ` ( Q ` m ) ) <_ ( S.2 ` G ) ) | 
						
							| 232 | 229 75 230 231 | syl3anc |  |-  ( ( ph /\ m e. NN ) -> ( S.1 ` ( Q ` m ) ) <_ ( S.2 ` G ) ) | 
						
							| 233 | 215 217 218 219 226 232 | le2addd |  |-  ( ( ph /\ m e. NN ) -> ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) | 
						
							| 234 | 213 233 | eqbrtrd |  |-  ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) | 
						
							| 235 | 234 | ralrimiva |  |-  ( ph -> A. m e. NN ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) | 
						
							| 236 |  | 2fveq3 |  |-  ( m = k -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) = ( S.1 ` ( ( P oF oF + Q ) ` k ) ) ) | 
						
							| 237 | 236 | breq1d |  |-  ( m = k -> ( ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) <-> ( S.1 ` ( ( P oF oF + Q ) ` k ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) ) | 
						
							| 238 | 237 | rspccva |  |-  ( ( A. m e. NN ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) /\ k e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` k ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) | 
						
							| 239 | 235 238 | sylan |  |-  ( ( ph /\ k e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` k ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) | 
						
							| 240 | 13 19 27 153 207 209 210 239 | itg2i1fseq2 |  |-  ( ph -> ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( S.2 ` ( F oF + G ) ) ) | 
						
							| 241 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 242 |  | eqid |  |-  ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) = ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) | 
						
							| 243 | 1 2 7 8 9 242 3 | itg2i1fseq3 |  |-  ( ph -> ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ~~> ( S.2 ` F ) ) | 
						
							| 244 | 24 | mptex |  |-  ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) e. _V | 
						
							| 245 | 244 | a1i |  |-  ( ph -> ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) e. _V ) | 
						
							| 246 |  | eqid |  |-  ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) = ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) | 
						
							| 247 | 4 5 10 11 12 246 6 | itg2i1fseq3 |  |-  ( ph -> ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ~~> ( S.2 ` G ) ) | 
						
							| 248 |  | 2fveq3 |  |-  ( k = m -> ( S.1 ` ( P ` k ) ) = ( S.1 ` ( P ` m ) ) ) | 
						
							| 249 |  | fvex |  |-  ( S.1 ` ( P ` m ) ) e. _V | 
						
							| 250 | 248 242 249 | fvmpt |  |-  ( m e. NN -> ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) = ( S.1 ` ( P ` m ) ) ) | 
						
							| 251 | 250 | adantl |  |-  ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) = ( S.1 ` ( P ` m ) ) ) | 
						
							| 252 | 215 | recnd |  |-  ( ( ph /\ m e. NN ) -> ( S.1 ` ( P ` m ) ) e. CC ) | 
						
							| 253 | 251 252 | eqeltrd |  |-  ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) e. CC ) | 
						
							| 254 |  | 2fveq3 |  |-  ( k = m -> ( S.1 ` ( Q ` k ) ) = ( S.1 ` ( Q ` m ) ) ) | 
						
							| 255 |  | fvex |  |-  ( S.1 ` ( Q ` m ) ) e. _V | 
						
							| 256 | 254 246 255 | fvmpt |  |-  ( m e. NN -> ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) = ( S.1 ` ( Q ` m ) ) ) | 
						
							| 257 | 256 | adantl |  |-  ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) = ( S.1 ` ( Q ` m ) ) ) | 
						
							| 258 | 217 | recnd |  |-  ( ( ph /\ m e. NN ) -> ( S.1 ` ( Q ` m ) ) e. CC ) | 
						
							| 259 | 257 258 | eqeltrd |  |-  ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) e. CC ) | 
						
							| 260 |  | 2fveq3 |  |-  ( j = m -> ( S.1 ` ( ( P oF oF + Q ) ` j ) ) = ( S.1 ` ( ( P oF oF + Q ) ` m ) ) ) | 
						
							| 261 |  | fvex |  |-  ( S.1 ` ( ( P oF oF + Q ) ` m ) ) e. _V | 
						
							| 262 | 260 209 261 | fvmpt |  |-  ( m e. NN -> ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ` m ) = ( S.1 ` ( ( P oF oF + Q ) ` m ) ) ) | 
						
							| 263 | 262 | adantl |  |-  ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ` m ) = ( S.1 ` ( ( P oF oF + Q ) ` m ) ) ) | 
						
							| 264 | 251 257 | oveq12d |  |-  ( ( ph /\ m e. NN ) -> ( ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) + ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) ) = ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) ) | 
						
							| 265 | 213 263 264 | 3eqtr4d |  |-  ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ` m ) = ( ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) + ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) ) ) | 
						
							| 266 | 157 241 243 245 247 253 259 265 | climadd |  |-  ( ph -> ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( ( S.2 ` F ) + ( S.2 ` G ) ) ) | 
						
							| 267 |  | climuni |  |-  ( ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( S.2 ` ( F oF + G ) ) /\ ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( ( S.2 ` F ) + ( S.2 ` G ) ) ) -> ( S.2 ` ( F oF + G ) ) = ( ( S.2 ` F ) + ( S.2 ` G ) ) ) | 
						
							| 268 | 240 266 267 | syl2anc |  |-  ( ph -> ( S.2 ` ( F oF + G ) ) = ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |