Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
2 |
1
|
itg2val |
|- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) = sup ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) ) |
3 |
1
|
itg2lcl |
|- { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } C_ RR* |
4 |
|
supxrcl |
|- ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } C_ RR* -> sup ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) e. RR* ) |
5 |
3 4
|
ax-mp |
|- sup ( { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) e. RR* |
6 |
2 5
|
eqeltrdi |
|- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |