| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2lea.1 |  |-  ( ph -> F : RR --> ( 0 [,] +oo ) ) | 
						
							| 2 |  | itg2lea.2 |  |-  ( ph -> G : RR --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | itg2lea.3 |  |-  ( ph -> A C_ RR ) | 
						
							| 4 |  | itg2lea.4 |  |-  ( ph -> ( vol* ` A ) = 0 ) | 
						
							| 5 |  | itg2eqa.5 |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) = ( G ` x ) ) | 
						
							| 6 |  | itg2cl |  |-  ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) | 
						
							| 7 | 1 6 | syl |  |-  ( ph -> ( S.2 ` F ) e. RR* ) | 
						
							| 8 |  | itg2cl |  |-  ( G : RR --> ( 0 [,] +oo ) -> ( S.2 ` G ) e. RR* ) | 
						
							| 9 | 2 8 | syl |  |-  ( ph -> ( S.2 ` G ) e. RR* ) | 
						
							| 10 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 11 |  | eldifi |  |-  ( x e. ( RR \ A ) -> x e. RR ) | 
						
							| 12 |  | ffvelcdm |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,] +oo ) ) | 
						
							| 13 | 1 11 12 | syl2an |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) e. ( 0 [,] +oo ) ) | 
						
							| 14 | 10 13 | sselid |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) e. RR* ) | 
						
							| 15 | 14 | xrleidd |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( F ` x ) ) | 
						
							| 16 | 15 5 | breqtrd |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( G ` x ) ) | 
						
							| 17 | 1 2 3 4 16 | itg2lea |  |-  ( ph -> ( S.2 ` F ) <_ ( S.2 ` G ) ) | 
						
							| 18 | 5 15 | eqbrtrrd |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( G ` x ) <_ ( F ` x ) ) | 
						
							| 19 | 2 1 3 4 18 | itg2lea |  |-  ( ph -> ( S.2 ` G ) <_ ( S.2 ` F ) ) | 
						
							| 20 | 7 9 17 19 | xrletrid |  |-  ( ph -> ( S.2 ` F ) = ( S.2 ` G ) ) |