Metamath Proof Explorer


Theorem itg2eqa

Description: Approximate equality of integrals. If F = G for almost all x , then S.2 F = S.2 G . (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses itg2lea.1
|- ( ph -> F : RR --> ( 0 [,] +oo ) )
itg2lea.2
|- ( ph -> G : RR --> ( 0 [,] +oo ) )
itg2lea.3
|- ( ph -> A C_ RR )
itg2lea.4
|- ( ph -> ( vol* ` A ) = 0 )
itg2eqa.5
|- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) = ( G ` x ) )
Assertion itg2eqa
|- ( ph -> ( S.2 ` F ) = ( S.2 ` G ) )

Proof

Step Hyp Ref Expression
1 itg2lea.1
 |-  ( ph -> F : RR --> ( 0 [,] +oo ) )
2 itg2lea.2
 |-  ( ph -> G : RR --> ( 0 [,] +oo ) )
3 itg2lea.3
 |-  ( ph -> A C_ RR )
4 itg2lea.4
 |-  ( ph -> ( vol* ` A ) = 0 )
5 itg2eqa.5
 |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) = ( G ` x ) )
6 itg2cl
 |-  ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* )
7 1 6 syl
 |-  ( ph -> ( S.2 ` F ) e. RR* )
8 itg2cl
 |-  ( G : RR --> ( 0 [,] +oo ) -> ( S.2 ` G ) e. RR* )
9 2 8 syl
 |-  ( ph -> ( S.2 ` G ) e. RR* )
10 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
11 eldifi
 |-  ( x e. ( RR \ A ) -> x e. RR )
12 ffvelrn
 |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,] +oo ) )
13 1 11 12 syl2an
 |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) e. ( 0 [,] +oo ) )
14 10 13 sseldi
 |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) e. RR* )
15 14 xrleidd
 |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( F ` x ) )
16 15 5 breqtrd
 |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( G ` x ) )
17 1 2 3 4 16 itg2lea
 |-  ( ph -> ( S.2 ` F ) <_ ( S.2 ` G ) )
18 5 15 eqbrtrrd
 |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( G ` x ) <_ ( F ` x ) )
19 2 1 3 4 18 itg2lea
 |-  ( ph -> ( S.2 ` G ) <_ ( S.2 ` F ) )
20 7 9 17 19 xrletrid
 |-  ( ph -> ( S.2 ` F ) = ( S.2 ` G ) )