Step |
Hyp |
Ref |
Expression |
1 |
|
itg10 |
|- ( S.1 ` ( RR X. { 0 } ) ) = 0 |
2 |
|
ffvelrn |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ y e. RR ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
3 |
|
0xr |
|- 0 e. RR* |
4 |
|
pnfxr |
|- +oo e. RR* |
5 |
|
elicc1 |
|- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( ( F ` y ) e. ( 0 [,] +oo ) <-> ( ( F ` y ) e. RR* /\ 0 <_ ( F ` y ) /\ ( F ` y ) <_ +oo ) ) ) |
6 |
3 4 5
|
mp2an |
|- ( ( F ` y ) e. ( 0 [,] +oo ) <-> ( ( F ` y ) e. RR* /\ 0 <_ ( F ` y ) /\ ( F ` y ) <_ +oo ) ) |
7 |
6
|
simp2bi |
|- ( ( F ` y ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` y ) ) |
8 |
2 7
|
syl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ y e. RR ) -> 0 <_ ( F ` y ) ) |
9 |
8
|
ralrimiva |
|- ( F : RR --> ( 0 [,] +oo ) -> A. y e. RR 0 <_ ( F ` y ) ) |
10 |
|
0re |
|- 0 e. RR |
11 |
|
fnconstg |
|- ( 0 e. RR -> ( RR X. { 0 } ) Fn RR ) |
12 |
10 11
|
mp1i |
|- ( F : RR --> ( 0 [,] +oo ) -> ( RR X. { 0 } ) Fn RR ) |
13 |
|
ffn |
|- ( F : RR --> ( 0 [,] +oo ) -> F Fn RR ) |
14 |
|
reex |
|- RR e. _V |
15 |
14
|
a1i |
|- ( F : RR --> ( 0 [,] +oo ) -> RR e. _V ) |
16 |
|
inidm |
|- ( RR i^i RR ) = RR |
17 |
|
c0ex |
|- 0 e. _V |
18 |
17
|
fvconst2 |
|- ( y e. RR -> ( ( RR X. { 0 } ) ` y ) = 0 ) |
19 |
18
|
adantl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ y e. RR ) -> ( ( RR X. { 0 } ) ` y ) = 0 ) |
20 |
|
eqidd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) |
21 |
12 13 15 15 16 19 20
|
ofrfval |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( RR X. { 0 } ) oR <_ F <-> A. y e. RR 0 <_ ( F ` y ) ) ) |
22 |
9 21
|
mpbird |
|- ( F : RR --> ( 0 [,] +oo ) -> ( RR X. { 0 } ) oR <_ F ) |
23 |
|
i1f0 |
|- ( RR X. { 0 } ) e. dom S.1 |
24 |
|
itg2ub |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( RR X. { 0 } ) e. dom S.1 /\ ( RR X. { 0 } ) oR <_ F ) -> ( S.1 ` ( RR X. { 0 } ) ) <_ ( S.2 ` F ) ) |
25 |
23 24
|
mp3an2 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( RR X. { 0 } ) oR <_ F ) -> ( S.1 ` ( RR X. { 0 } ) ) <_ ( S.2 ` F ) ) |
26 |
22 25
|
mpdan |
|- ( F : RR --> ( 0 [,] +oo ) -> ( S.1 ` ( RR X. { 0 } ) ) <_ ( S.2 ` F ) ) |
27 |
1 26
|
eqbrtrrid |
|- ( F : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` F ) ) |