| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2gt0.1 |
|- ( ph -> A e. dom vol ) |
| 2 |
|
itg2gt0.2 |
|- ( ph -> 0 < ( vol ` A ) ) |
| 3 |
|
itg2gt0.3 |
|- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
| 4 |
|
itg2gt0.4 |
|- ( ph -> F e. MblFn ) |
| 5 |
|
itg2gt0.5 |
|- ( ( ph /\ x e. A ) -> 0 < ( F ` x ) ) |
| 6 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 7 |
|
volf |
|- vol : dom vol --> ( 0 [,] +oo ) |
| 8 |
7
|
ffvelcdmi |
|- ( A e. dom vol -> ( vol ` A ) e. ( 0 [,] +oo ) ) |
| 9 |
6 8
|
sselid |
|- ( A e. dom vol -> ( vol ` A ) e. RR* ) |
| 10 |
1 9
|
syl |
|- ( ph -> ( vol ` A ) e. RR* ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol ` A ) e. RR* ) |
| 12 |
4
|
elexd |
|- ( ph -> F e. _V ) |
| 13 |
|
cnvexg |
|- ( F e. _V -> `' F e. _V ) |
| 14 |
12 13
|
syl |
|- ( ph -> `' F e. _V ) |
| 15 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. _V ) |
| 16 |
14 15
|
syl |
|- ( ph -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. _V ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. _V ) |
| 18 |
17
|
fmpttd |
|- ( ph -> ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) : NN --> _V ) |
| 19 |
18
|
ffnd |
|- ( ph -> ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) Fn NN ) |
| 20 |
|
fniunfv |
|- ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) Fn NN -> U_ k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) |
| 21 |
19 20
|
syl |
|- ( ph -> U_ k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) |
| 22 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 23 |
|
fss |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : RR --> RR ) |
| 24 |
3 22 23
|
sylancl |
|- ( ph -> F : RR --> RR ) |
| 25 |
|
mbfima |
|- ( ( F e. MblFn /\ F : RR --> RR ) -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. dom vol ) |
| 26 |
4 24 25
|
syl2anc |
|- ( ph -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. dom vol ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( `' F " ( ( 1 / n ) (,) +oo ) ) e. dom vol ) |
| 28 |
27
|
fmpttd |
|- ( ph -> ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) : NN --> dom vol ) |
| 29 |
28
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) e. dom vol ) |
| 30 |
29
|
ralrimiva |
|- ( ph -> A. k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) e. dom vol ) |
| 31 |
|
iunmbl |
|- ( A. k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) e. dom vol -> U_ k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) e. dom vol ) |
| 32 |
30 31
|
syl |
|- ( ph -> U_ k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) e. dom vol ) |
| 33 |
21 32
|
eqeltrrd |
|- ( ph -> U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) e. dom vol ) |
| 34 |
|
mblss |
|- ( U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) e. dom vol -> U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ RR ) |
| 35 |
33 34
|
syl |
|- ( ph -> U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ RR ) |
| 36 |
|
ovolcl |
|- ( U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ RR -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) e. RR* ) |
| 37 |
35 36
|
syl |
|- ( ph -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) e. RR* ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) e. RR* ) |
| 39 |
|
0xr |
|- 0 e. RR* |
| 40 |
39
|
a1i |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> 0 e. RR* ) |
| 41 |
|
mblvol |
|- ( A e. dom vol -> ( vol ` A ) = ( vol* ` A ) ) |
| 42 |
1 41
|
syl |
|- ( ph -> ( vol ` A ) = ( vol* ` A ) ) |
| 43 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
| 44 |
1 43
|
syl |
|- ( ph -> A C_ RR ) |
| 45 |
44
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
| 46 |
3
|
ffvelcdmda |
|- ( ( ph /\ x e. RR ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 47 |
|
elrege0 |
|- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 48 |
46 47
|
sylib |
|- ( ( ph /\ x e. RR ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 49 |
48
|
simpld |
|- ( ( ph /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 50 |
45 49
|
syldan |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. RR ) |
| 51 |
|
nnrecl |
|- ( ( ( F ` x ) e. RR /\ 0 < ( F ` x ) ) -> E. k e. NN ( 1 / k ) < ( F ` x ) ) |
| 52 |
50 5 51
|
syl2anc |
|- ( ( ph /\ x e. A ) -> E. k e. NN ( 1 / k ) < ( F ` x ) ) |
| 53 |
3
|
ffnd |
|- ( ph -> F Fn RR ) |
| 54 |
53
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> F Fn RR ) |
| 55 |
|
elpreima |
|- ( F Fn RR -> ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) ) ) |
| 56 |
54 55
|
syl |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) ) ) |
| 57 |
45
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> x e. RR ) |
| 58 |
57
|
biantrurd |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( F ` x ) e. ( ( 1 / k ) (,) +oo ) <-> ( x e. RR /\ ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) ) ) |
| 59 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
| 60 |
59
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. RR ) |
| 61 |
60
|
rexrd |
|- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. RR* ) |
| 62 |
61
|
adantlr |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( 1 / k ) e. RR* ) |
| 63 |
|
elioopnf |
|- ( ( 1 / k ) e. RR* -> ( ( F ` x ) e. ( ( 1 / k ) (,) +oo ) <-> ( ( F ` x ) e. RR /\ ( 1 / k ) < ( F ` x ) ) ) ) |
| 64 |
62 63
|
syl |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( F ` x ) e. ( ( 1 / k ) (,) +oo ) <-> ( ( F ` x ) e. RR /\ ( 1 / k ) < ( F ` x ) ) ) ) |
| 65 |
56 58 64
|
3bitr2d |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) <-> ( ( F ` x ) e. RR /\ ( 1 / k ) < ( F ` x ) ) ) ) |
| 66 |
|
id |
|- ( k e. NN -> k e. NN ) |
| 67 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. _V ) |
| 68 |
14 67
|
syl |
|- ( ph -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. _V ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ x e. A ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. _V ) |
| 70 |
|
oveq2 |
|- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
| 71 |
70
|
oveq1d |
|- ( n = k -> ( ( 1 / n ) (,) +oo ) = ( ( 1 / k ) (,) +oo ) ) |
| 72 |
71
|
imaeq2d |
|- ( n = k -> ( `' F " ( ( 1 / n ) (,) +oo ) ) = ( `' F " ( ( 1 / k ) (,) +oo ) ) ) |
| 73 |
|
eqid |
|- ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) = ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) |
| 74 |
72 73
|
fvmptg |
|- ( ( k e. NN /\ ( `' F " ( ( 1 / k ) (,) +oo ) ) e. _V ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = ( `' F " ( ( 1 / k ) (,) +oo ) ) ) |
| 75 |
66 69 74
|
syl2anr |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = ( `' F " ( ( 1 / k ) (,) +oo ) ) ) |
| 76 |
75
|
eleq2d |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) <-> x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) |
| 77 |
50
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( F ` x ) e. RR ) |
| 78 |
77
|
biantrurd |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( 1 / k ) < ( F ` x ) <-> ( ( F ` x ) e. RR /\ ( 1 / k ) < ( F ` x ) ) ) ) |
| 79 |
65 76 78
|
3bitr4rd |
|- ( ( ( ph /\ x e. A ) /\ k e. NN ) -> ( ( 1 / k ) < ( F ` x ) <-> x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 80 |
79
|
rexbidva |
|- ( ( ph /\ x e. A ) -> ( E. k e. NN ( 1 / k ) < ( F ` x ) <-> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 81 |
52 80
|
mpbid |
|- ( ( ph /\ x e. A ) -> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) |
| 82 |
81
|
ex |
|- ( ph -> ( x e. A -> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 83 |
|
eluni2 |
|- ( x e. U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) <-> E. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) x e. z ) |
| 84 |
|
eleq2 |
|- ( z = ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) -> ( x e. z <-> x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 85 |
84
|
rexrn |
|- ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) Fn NN -> ( E. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) x e. z <-> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 86 |
19 85
|
syl |
|- ( ph -> ( E. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) x e. z <-> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 87 |
83 86
|
bitrid |
|- ( ph -> ( x e. U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) <-> E. k e. NN x e. ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 88 |
82 87
|
sylibrd |
|- ( ph -> ( x e. A -> x e. U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 89 |
88
|
ssrdv |
|- ( ph -> A C_ U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) |
| 90 |
|
ovolss |
|- ( ( A C_ U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) /\ U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ RR ) -> ( vol* ` A ) <_ ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 91 |
89 35 90
|
syl2anc |
|- ( ph -> ( vol* ` A ) <_ ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 92 |
42 91
|
eqbrtrd |
|- ( ph -> ( vol ` A ) <_ ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 93 |
92
|
adantr |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol ` A ) <_ ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 94 |
|
mblvol |
|- ( U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) e. dom vol -> ( vol ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 95 |
33 94
|
syl |
|- ( ph -> ( vol ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) ) |
| 96 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
| 97 |
96
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN ) |
| 98 |
|
nnrecre |
|- ( ( k + 1 ) e. NN -> ( 1 / ( k + 1 ) ) e. RR ) |
| 99 |
97 98
|
syl |
|- ( ( ph /\ k e. NN ) -> ( 1 / ( k + 1 ) ) e. RR ) |
| 100 |
99
|
rexrd |
|- ( ( ph /\ k e. NN ) -> ( 1 / ( k + 1 ) ) e. RR* ) |
| 101 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
| 102 |
101
|
adantl |
|- ( ( ph /\ k e. NN ) -> k e. RR ) |
| 103 |
102
|
lep1d |
|- ( ( ph /\ k e. NN ) -> k <_ ( k + 1 ) ) |
| 104 |
|
nngt0 |
|- ( k e. NN -> 0 < k ) |
| 105 |
104
|
adantl |
|- ( ( ph /\ k e. NN ) -> 0 < k ) |
| 106 |
97
|
nnred |
|- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. RR ) |
| 107 |
97
|
nngt0d |
|- ( ( ph /\ k e. NN ) -> 0 < ( k + 1 ) ) |
| 108 |
|
lerec |
|- ( ( ( k e. RR /\ 0 < k ) /\ ( ( k + 1 ) e. RR /\ 0 < ( k + 1 ) ) ) -> ( k <_ ( k + 1 ) <-> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) ) |
| 109 |
102 105 106 107 108
|
syl22anc |
|- ( ( ph /\ k e. NN ) -> ( k <_ ( k + 1 ) <-> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) ) |
| 110 |
103 109
|
mpbid |
|- ( ( ph /\ k e. NN ) -> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) |
| 111 |
|
iooss1 |
|- ( ( ( 1 / ( k + 1 ) ) e. RR* /\ ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) -> ( ( 1 / k ) (,) +oo ) C_ ( ( 1 / ( k + 1 ) ) (,) +oo ) ) |
| 112 |
100 110 111
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( ( 1 / k ) (,) +oo ) C_ ( ( 1 / ( k + 1 ) ) (,) +oo ) ) |
| 113 |
|
imass2 |
|- ( ( ( 1 / k ) (,) +oo ) C_ ( ( 1 / ( k + 1 ) ) (,) +oo ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) C_ ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) ) |
| 114 |
112 113
|
syl |
|- ( ( ph /\ k e. NN ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) C_ ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) ) |
| 115 |
66 68 74
|
syl2anr |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = ( `' F " ( ( 1 / k ) (,) +oo ) ) ) |
| 116 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) e. _V ) |
| 117 |
14 116
|
syl |
|- ( ph -> ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) e. _V ) |
| 118 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( 1 / n ) = ( 1 / ( k + 1 ) ) ) |
| 119 |
118
|
oveq1d |
|- ( n = ( k + 1 ) -> ( ( 1 / n ) (,) +oo ) = ( ( 1 / ( k + 1 ) ) (,) +oo ) ) |
| 120 |
119
|
imaeq2d |
|- ( n = ( k + 1 ) -> ( `' F " ( ( 1 / n ) (,) +oo ) ) = ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) ) |
| 121 |
120 73
|
fvmptg |
|- ( ( ( k + 1 ) e. NN /\ ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) e. _V ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` ( k + 1 ) ) = ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) ) |
| 122 |
96 117 121
|
syl2anr |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` ( k + 1 ) ) = ( `' F " ( ( 1 / ( k + 1 ) ) (,) +oo ) ) ) |
| 123 |
114 115 122
|
3sstr4d |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) C_ ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` ( k + 1 ) ) ) |
| 124 |
123
|
ralrimiva |
|- ( ph -> A. k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) C_ ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` ( k + 1 ) ) ) |
| 125 |
|
volsup |
|- ( ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) : NN --> dom vol /\ A. k e. NN ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) C_ ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` ( k + 1 ) ) ) -> ( vol ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) ) |
| 126 |
28 124 125
|
syl2anc |
|- ( ph -> ( vol ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) ) |
| 127 |
95 126
|
eqtr3d |
|- ( ph -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) ) |
| 128 |
127
|
adantr |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) = sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) ) |
| 129 |
68
|
adantr |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. _V ) |
| 130 |
66 129 74
|
syl2anr |
|- ( ( ( ph /\ -. 0 < ( S.2 ` F ) ) /\ k e. NN ) -> ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) = ( `' F " ( ( 1 / k ) (,) +oo ) ) ) |
| 131 |
130
|
fveq2d |
|- ( ( ( ph /\ -. 0 < ( S.2 ` F ) ) /\ k e. NN ) -> ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) = ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) |
| 132 |
39
|
a1i |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> 0 e. RR* ) |
| 133 |
|
nnrecgt0 |
|- ( k e. NN -> 0 < ( 1 / k ) ) |
| 134 |
133
|
adantl |
|- ( ( ph /\ k e. NN ) -> 0 < ( 1 / k ) ) |
| 135 |
|
0re |
|- 0 e. RR |
| 136 |
|
ltle |
|- ( ( 0 e. RR /\ ( 1 / k ) e. RR ) -> ( 0 < ( 1 / k ) -> 0 <_ ( 1 / k ) ) ) |
| 137 |
135 60 136
|
sylancr |
|- ( ( ph /\ k e. NN ) -> ( 0 < ( 1 / k ) -> 0 <_ ( 1 / k ) ) ) |
| 138 |
134 137
|
mpd |
|- ( ( ph /\ k e. NN ) -> 0 <_ ( 1 / k ) ) |
| 139 |
|
elxrge0 |
|- ( ( 1 / k ) e. ( 0 [,] +oo ) <-> ( ( 1 / k ) e. RR* /\ 0 <_ ( 1 / k ) ) ) |
| 140 |
61 138 139
|
sylanbrc |
|- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. ( 0 [,] +oo ) ) |
| 141 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
| 142 |
|
ifcl |
|- ( ( ( 1 / k ) e. ( 0 [,] +oo ) /\ 0 e. ( 0 [,] +oo ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) e. ( 0 [,] +oo ) ) |
| 143 |
140 141 142
|
sylancl |
|- ( ( ph /\ k e. NN ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) e. ( 0 [,] +oo ) ) |
| 144 |
143
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) e. ( 0 [,] +oo ) ) |
| 145 |
144
|
fmpttd |
|- ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
| 146 |
145
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) : RR --> ( 0 [,] +oo ) ) |
| 147 |
|
itg2cl |
|- ( ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR* ) |
| 148 |
146 147
|
syl |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR* ) |
| 149 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 150 |
|
fss |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : RR --> ( 0 [,] +oo ) ) |
| 151 |
3 149 150
|
sylancl |
|- ( ph -> F : RR --> ( 0 [,] +oo ) ) |
| 152 |
|
itg2cl |
|- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |
| 153 |
151 152
|
syl |
|- ( ph -> ( S.2 ` F ) e. RR* ) |
| 154 |
153
|
adantr |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( S.2 ` F ) e. RR* ) |
| 155 |
|
0nrp |
|- -. 0 e. RR+ |
| 156 |
|
simpr |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) |
| 157 |
115 29
|
eqeltrrd |
|- ( ( ph /\ k e. NN ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol ) |
| 158 |
157
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol ) |
| 159 |
158
|
adantr |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol ) |
| 160 |
156 135
|
eqeltrrdi |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR ) |
| 161 |
60 134
|
elrpd |
|- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. RR+ ) |
| 162 |
161
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( 1 / k ) e. RR+ ) |
| 163 |
162
|
adantr |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( 1 / k ) e. RR+ ) |
| 164 |
|
itg2const2 |
|- ( ( ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol /\ ( 1 / k ) e. RR+ ) -> ( ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR <-> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR ) ) |
| 165 |
159 163 164
|
syl2anc |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR <-> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR ) ) |
| 166 |
160 165
|
mpbird |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR ) |
| 167 |
|
elrege0 |
|- ( ( 1 / k ) e. ( 0 [,) +oo ) <-> ( ( 1 / k ) e. RR /\ 0 <_ ( 1 / k ) ) ) |
| 168 |
60 138 167
|
sylanbrc |
|- ( ( ph /\ k e. NN ) -> ( 1 / k ) e. ( 0 [,) +oo ) ) |
| 169 |
168
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( 1 / k ) e. ( 0 [,) +oo ) ) |
| 170 |
169
|
adantr |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( 1 / k ) e. ( 0 [,) +oo ) ) |
| 171 |
|
itg2const |
|- ( ( ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol /\ ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR /\ ( 1 / k ) e. ( 0 [,) +oo ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) = ( ( 1 / k ) x. ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
| 172 |
159 166 170 171
|
syl3anc |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) = ( ( 1 / k ) x. ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
| 173 |
156 172
|
eqtrd |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> 0 = ( ( 1 / k ) x. ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
| 174 |
|
simplrr |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) |
| 175 |
166 174
|
elrpd |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR+ ) |
| 176 |
163 175
|
rpmulcld |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> ( ( 1 / k ) x. ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) e. RR+ ) |
| 177 |
173 176
|
eqeltrd |
|- ( ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) /\ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) -> 0 e. RR+ ) |
| 178 |
177
|
ex |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) -> 0 e. RR+ ) ) |
| 179 |
155 178
|
mtoi |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> -. 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) |
| 180 |
|
itg2ge0 |
|- ( ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) |
| 181 |
146 180
|
syl |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> 0 <_ ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) |
| 182 |
|
xrleloe |
|- ( ( 0 e. RR* /\ ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) e. RR* ) -> ( 0 <_ ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) <-> ( 0 < ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) \/ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) ) ) |
| 183 |
39 148 182
|
sylancr |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( 0 <_ ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) <-> ( 0 < ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) \/ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) ) ) |
| 184 |
181 183
|
mpbid |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( 0 < ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) \/ 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) ) |
| 185 |
184
|
ord |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( -. 0 < ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) -> 0 = ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) ) |
| 186 |
179 185
|
mt3d |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> 0 < ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) ) |
| 187 |
151
|
adantr |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> F : RR --> ( 0 [,] +oo ) ) |
| 188 |
60
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( 1 / k ) e. RR ) |
| 189 |
53
|
adantr |
|- ( ( ph /\ k e. NN ) -> F Fn RR ) |
| 190 |
189 55
|
syl |
|- ( ( ph /\ k e. NN ) -> ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) <-> ( x e. RR /\ ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) ) ) |
| 191 |
190
|
biimpa |
|- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( x e. RR /\ ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) ) |
| 192 |
191
|
simpld |
|- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> x e. RR ) |
| 193 |
49
|
adantlr |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 194 |
192 193
|
syldan |
|- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( F ` x ) e. RR ) |
| 195 |
61
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( 1 / k ) e. RR* ) |
| 196 |
191
|
simprd |
|- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( F ` x ) e. ( ( 1 / k ) (,) +oo ) ) |
| 197 |
|
simpr |
|- ( ( ( F ` x ) e. RR /\ ( 1 / k ) < ( F ` x ) ) -> ( 1 / k ) < ( F ` x ) ) |
| 198 |
63 197
|
biimtrdi |
|- ( ( 1 / k ) e. RR* -> ( ( F ` x ) e. ( ( 1 / k ) (,) +oo ) -> ( 1 / k ) < ( F ` x ) ) ) |
| 199 |
195 196 198
|
sylc |
|- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( 1 / k ) < ( F ` x ) ) |
| 200 |
188 194 199
|
ltled |
|- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> ( 1 / k ) <_ ( F ` x ) ) |
| 201 |
48
|
simprd |
|- ( ( ph /\ x e. RR ) -> 0 <_ ( F ` x ) ) |
| 202 |
201
|
adantlr |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> 0 <_ ( F ` x ) ) |
| 203 |
192 202
|
syldan |
|- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> 0 <_ ( F ` x ) ) |
| 204 |
|
breq1 |
|- ( ( 1 / k ) = if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) -> ( ( 1 / k ) <_ ( F ` x ) <-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) ) |
| 205 |
|
breq1 |
|- ( 0 = if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) -> ( 0 <_ ( F ` x ) <-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) ) |
| 206 |
204 205
|
ifboth |
|- ( ( ( 1 / k ) <_ ( F ` x ) /\ 0 <_ ( F ` x ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 207 |
200 203 206
|
syl2anc |
|- ( ( ( ph /\ k e. NN ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 208 |
207
|
adantlr |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 209 |
|
iffalse |
|- ( -. x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) = 0 ) |
| 210 |
209
|
adantl |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) = 0 ) |
| 211 |
202
|
adantr |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> 0 <_ ( F ` x ) ) |
| 212 |
210 211
|
eqbrtrd |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 213 |
208 212
|
pm2.61dan |
|- ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 214 |
213
|
ralrimiva |
|- ( ( ph /\ k e. NN ) -> A. x e. RR if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 215 |
214
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> A. x e. RR if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) |
| 216 |
|
reex |
|- RR e. _V |
| 217 |
216
|
a1i |
|- ( ph -> RR e. _V ) |
| 218 |
|
ovex |
|- ( 1 / k ) e. _V |
| 219 |
|
c0ex |
|- 0 e. _V |
| 220 |
218 219
|
ifex |
|- if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) e. _V |
| 221 |
220
|
a1i |
|- ( ( ph /\ x e. RR ) -> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) e. _V ) |
| 222 |
|
fvexd |
|- ( ( ph /\ x e. RR ) -> ( F ` x ) e. _V ) |
| 223 |
|
eqidd |
|- ( ph -> ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) = ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) |
| 224 |
3
|
feqmptd |
|- ( ph -> F = ( x e. RR |-> ( F ` x ) ) ) |
| 225 |
217 221 222 223 224
|
ofrfval2 |
|- ( ph -> ( ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) oR <_ F <-> A. x e. RR if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) ) |
| 226 |
225
|
biimpar |
|- ( ( ph /\ A. x e. RR if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) <_ ( F ` x ) ) -> ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) oR <_ F ) |
| 227 |
215 226
|
syldan |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) oR <_ F ) |
| 228 |
|
itg2le |
|- ( ( ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) : RR --> ( 0 [,] +oo ) /\ F : RR --> ( 0 [,] +oo ) /\ ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) oR <_ F ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) <_ ( S.2 ` F ) ) |
| 229 |
146 187 227 228
|
syl3anc |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> ( S.2 ` ( x e. RR |-> if ( x e. ( `' F " ( ( 1 / k ) (,) +oo ) ) , ( 1 / k ) , 0 ) ) ) <_ ( S.2 ` F ) ) |
| 230 |
132 148 154 186 229
|
xrltletrd |
|- ( ( ph /\ ( k e. NN /\ 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) -> 0 < ( S.2 ` F ) ) |
| 231 |
230
|
expr |
|- ( ( ph /\ k e. NN ) -> ( 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) -> 0 < ( S.2 ` F ) ) ) |
| 232 |
231
|
con3d |
|- ( ( ph /\ k e. NN ) -> ( -. 0 < ( S.2 ` F ) -> -. 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
| 233 |
7
|
ffvelcdmi |
|- ( ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. ( 0 [,] +oo ) ) |
| 234 |
6 233
|
sselid |
|- ( ( `' F " ( ( 1 / k ) (,) +oo ) ) e. dom vol -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR* ) |
| 235 |
157 234
|
syl |
|- ( ( ph /\ k e. NN ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR* ) |
| 236 |
|
xrlenlt |
|- ( ( ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) e. RR* /\ 0 e. RR* ) -> ( ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) <_ 0 <-> -. 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
| 237 |
235 39 236
|
sylancl |
|- ( ( ph /\ k e. NN ) -> ( ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) <_ 0 <-> -. 0 < ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) ) ) |
| 238 |
232 237
|
sylibrd |
|- ( ( ph /\ k e. NN ) -> ( -. 0 < ( S.2 ` F ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) <_ 0 ) ) |
| 239 |
238
|
imp |
|- ( ( ( ph /\ k e. NN ) /\ -. 0 < ( S.2 ` F ) ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) <_ 0 ) |
| 240 |
239
|
an32s |
|- ( ( ( ph /\ -. 0 < ( S.2 ` F ) ) /\ k e. NN ) -> ( vol ` ( `' F " ( ( 1 / k ) (,) +oo ) ) ) <_ 0 ) |
| 241 |
131 240
|
eqbrtrd |
|- ( ( ( ph /\ -. 0 < ( S.2 ` F ) ) /\ k e. NN ) -> ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) |
| 242 |
241
|
ralrimiva |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> A. k e. NN ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) |
| 243 |
|
ffn |
|- ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) : NN --> _V -> ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) Fn NN ) |
| 244 |
|
fveq2 |
|- ( z = ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) -> ( vol ` z ) = ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) ) |
| 245 |
244
|
breq1d |
|- ( z = ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) -> ( ( vol ` z ) <_ 0 <-> ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) ) |
| 246 |
245
|
ralrn |
|- ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 <-> A. k e. NN ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) ) |
| 247 |
18 243 246
|
3syl |
|- ( ph -> ( A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 <-> A. k e. NN ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) ) |
| 248 |
247
|
adantr |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 <-> A. k e. NN ( vol ` ( ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ` k ) ) <_ 0 ) ) |
| 249 |
242 248
|
mpbird |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 ) |
| 250 |
|
ffn |
|- ( vol : dom vol --> ( 0 [,] +oo ) -> vol Fn dom vol ) |
| 251 |
7 250
|
ax-mp |
|- vol Fn dom vol |
| 252 |
28
|
frnd |
|- ( ph -> ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ dom vol ) |
| 253 |
252
|
adantr |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ dom vol ) |
| 254 |
|
breq1 |
|- ( x = ( vol ` z ) -> ( x <_ 0 <-> ( vol ` z ) <_ 0 ) ) |
| 255 |
254
|
ralima |
|- ( ( vol Fn dom vol /\ ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) C_ dom vol ) -> ( A. x e. ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) x <_ 0 <-> A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 ) ) |
| 256 |
251 253 255
|
sylancr |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( A. x e. ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) x <_ 0 <-> A. z e. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ( vol ` z ) <_ 0 ) ) |
| 257 |
249 256
|
mpbird |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> A. x e. ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) x <_ 0 ) |
| 258 |
|
imassrn |
|- ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) C_ ran vol |
| 259 |
|
frn |
|- ( vol : dom vol --> ( 0 [,] +oo ) -> ran vol C_ ( 0 [,] +oo ) ) |
| 260 |
7 259
|
ax-mp |
|- ran vol C_ ( 0 [,] +oo ) |
| 261 |
260 6
|
sstri |
|- ran vol C_ RR* |
| 262 |
258 261
|
sstri |
|- ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) C_ RR* |
| 263 |
|
supxrleub |
|- ( ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) C_ RR* /\ 0 e. RR* ) -> ( sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) <_ 0 <-> A. x e. ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) x <_ 0 ) ) |
| 264 |
262 39 263
|
mp2an |
|- ( sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) <_ 0 <-> A. x e. ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) x <_ 0 ) |
| 265 |
257 264
|
sylibr |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> sup ( ( vol " ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) , RR* , < ) <_ 0 ) |
| 266 |
128 265
|
eqbrtrd |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol* ` U. ran ( n e. NN |-> ( `' F " ( ( 1 / n ) (,) +oo ) ) ) ) <_ 0 ) |
| 267 |
11 38 40 93 266
|
xrletrd |
|- ( ( ph /\ -. 0 < ( S.2 ` F ) ) -> ( vol ` A ) <_ 0 ) |
| 268 |
267
|
ex |
|- ( ph -> ( -. 0 < ( S.2 ` F ) -> ( vol ` A ) <_ 0 ) ) |
| 269 |
|
xrlenlt |
|- ( ( ( vol ` A ) e. RR* /\ 0 e. RR* ) -> ( ( vol ` A ) <_ 0 <-> -. 0 < ( vol ` A ) ) ) |
| 270 |
10 39 269
|
sylancl |
|- ( ph -> ( ( vol ` A ) <_ 0 <-> -. 0 < ( vol ` A ) ) ) |
| 271 |
268 270
|
sylibd |
|- ( ph -> ( -. 0 < ( S.2 ` F ) -> -. 0 < ( vol ` A ) ) ) |
| 272 |
2 271
|
mt4d |
|- ( ph -> 0 < ( S.2 ` F ) ) |