| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2i1fseq.1 |  |-  ( ph -> F e. MblFn ) | 
						
							| 2 |  | itg2i1fseq.2 |  |-  ( ph -> F : RR --> ( 0 [,) +oo ) ) | 
						
							| 3 |  | itg2i1fseq.3 |  |-  ( ph -> P : NN --> dom S.1 ) | 
						
							| 4 |  | itg2i1fseq.4 |  |-  ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) | 
						
							| 5 |  | itg2i1fseq.5 |  |-  ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) | 
						
							| 6 |  | itg2i1fseq.6 |  |-  S = ( m e. NN |-> ( S.1 ` ( P ` m ) ) ) | 
						
							| 7 |  | itg2i1fseq2.7 |  |-  ( ph -> M e. RR ) | 
						
							| 8 |  | itg2i1fseq2.8 |  |-  ( ( ph /\ k e. NN ) -> ( S.1 ` ( P ` k ) ) <_ M ) | 
						
							| 9 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 10 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 11 | 3 | ffvelcdmda |  |-  ( ( ph /\ m e. NN ) -> ( P ` m ) e. dom S.1 ) | 
						
							| 12 |  | itg1cl |  |-  ( ( P ` m ) e. dom S.1 -> ( S.1 ` ( P ` m ) ) e. RR ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ph /\ m e. NN ) -> ( S.1 ` ( P ` m ) ) e. RR ) | 
						
							| 14 | 13 6 | fmptd |  |-  ( ph -> S : NN --> RR ) | 
						
							| 15 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( P ` k ) e. dom S.1 ) | 
						
							| 16 |  | peano2nn |  |-  ( k e. NN -> ( k + 1 ) e. NN ) | 
						
							| 17 |  | ffvelcdm |  |-  ( ( P : NN --> dom S.1 /\ ( k + 1 ) e. NN ) -> ( P ` ( k + 1 ) ) e. dom S.1 ) | 
						
							| 18 | 3 16 17 | syl2an |  |-  ( ( ph /\ k e. NN ) -> ( P ` ( k + 1 ) ) e. dom S.1 ) | 
						
							| 19 |  | simpr |  |-  ( ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) -> ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) | 
						
							| 20 | 19 | ralimi |  |-  ( A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) -> A. n e. NN ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) | 
						
							| 21 | 4 20 | syl |  |-  ( ph -> A. n e. NN ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) | 
						
							| 22 |  | fveq2 |  |-  ( n = k -> ( P ` n ) = ( P ` k ) ) | 
						
							| 23 |  | fvoveq1 |  |-  ( n = k -> ( P ` ( n + 1 ) ) = ( P ` ( k + 1 ) ) ) | 
						
							| 24 | 22 23 | breq12d |  |-  ( n = k -> ( ( P ` n ) oR <_ ( P ` ( n + 1 ) ) <-> ( P ` k ) oR <_ ( P ` ( k + 1 ) ) ) ) | 
						
							| 25 | 24 | rspccva |  |-  ( ( A. n e. NN ( P ` n ) oR <_ ( P ` ( n + 1 ) ) /\ k e. NN ) -> ( P ` k ) oR <_ ( P ` ( k + 1 ) ) ) | 
						
							| 26 | 21 25 | sylan |  |-  ( ( ph /\ k e. NN ) -> ( P ` k ) oR <_ ( P ` ( k + 1 ) ) ) | 
						
							| 27 |  | itg1le |  |-  ( ( ( P ` k ) e. dom S.1 /\ ( P ` ( k + 1 ) ) e. dom S.1 /\ ( P ` k ) oR <_ ( P ` ( k + 1 ) ) ) -> ( S.1 ` ( P ` k ) ) <_ ( S.1 ` ( P ` ( k + 1 ) ) ) ) | 
						
							| 28 | 15 18 26 27 | syl3anc |  |-  ( ( ph /\ k e. NN ) -> ( S.1 ` ( P ` k ) ) <_ ( S.1 ` ( P ` ( k + 1 ) ) ) ) | 
						
							| 29 |  | 2fveq3 |  |-  ( m = k -> ( S.1 ` ( P ` m ) ) = ( S.1 ` ( P ` k ) ) ) | 
						
							| 30 |  | fvex |  |-  ( S.1 ` ( P ` k ) ) e. _V | 
						
							| 31 | 29 6 30 | fvmpt |  |-  ( k e. NN -> ( S ` k ) = ( S.1 ` ( P ` k ) ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( S ` k ) = ( S.1 ` ( P ` k ) ) ) | 
						
							| 33 |  | 2fveq3 |  |-  ( m = ( k + 1 ) -> ( S.1 ` ( P ` m ) ) = ( S.1 ` ( P ` ( k + 1 ) ) ) ) | 
						
							| 34 |  | fvex |  |-  ( S.1 ` ( P ` ( k + 1 ) ) ) e. _V | 
						
							| 35 | 33 6 34 | fvmpt |  |-  ( ( k + 1 ) e. NN -> ( S ` ( k + 1 ) ) = ( S.1 ` ( P ` ( k + 1 ) ) ) ) | 
						
							| 36 | 16 35 | syl |  |-  ( k e. NN -> ( S ` ( k + 1 ) ) = ( S.1 ` ( P ` ( k + 1 ) ) ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( S ` ( k + 1 ) ) = ( S.1 ` ( P ` ( k + 1 ) ) ) ) | 
						
							| 38 | 28 32 37 | 3brtr4d |  |-  ( ( ph /\ k e. NN ) -> ( S ` k ) <_ ( S ` ( k + 1 ) ) ) | 
						
							| 39 | 32 8 | eqbrtrd |  |-  ( ( ph /\ k e. NN ) -> ( S ` k ) <_ M ) | 
						
							| 40 | 39 | ralrimiva |  |-  ( ph -> A. k e. NN ( S ` k ) <_ M ) | 
						
							| 41 |  | brralrspcev |  |-  ( ( M e. RR /\ A. k e. NN ( S ` k ) <_ M ) -> E. z e. RR A. k e. NN ( S ` k ) <_ z ) | 
						
							| 42 | 7 40 41 | syl2anc |  |-  ( ph -> E. z e. RR A. k e. NN ( S ` k ) <_ z ) | 
						
							| 43 | 9 10 14 38 42 | climsup |  |-  ( ph -> S ~~> sup ( ran S , RR , < ) ) | 
						
							| 44 | 1 2 3 4 5 6 | itg2i1fseq |  |-  ( ph -> ( S.2 ` F ) = sup ( ran S , RR* , < ) ) | 
						
							| 45 | 14 | frnd |  |-  ( ph -> ran S C_ RR ) | 
						
							| 46 | 6 13 | dmmptd |  |-  ( ph -> dom S = NN ) | 
						
							| 47 |  | 1nn |  |-  1 e. NN | 
						
							| 48 |  | ne0i |  |-  ( 1 e. NN -> NN =/= (/) ) | 
						
							| 49 | 47 48 | mp1i |  |-  ( ph -> NN =/= (/) ) | 
						
							| 50 | 46 49 | eqnetrd |  |-  ( ph -> dom S =/= (/) ) | 
						
							| 51 |  | dm0rn0 |  |-  ( dom S = (/) <-> ran S = (/) ) | 
						
							| 52 | 51 | necon3bii |  |-  ( dom S =/= (/) <-> ran S =/= (/) ) | 
						
							| 53 | 50 52 | sylib |  |-  ( ph -> ran S =/= (/) ) | 
						
							| 54 |  | ffn |  |-  ( S : NN --> RR -> S Fn NN ) | 
						
							| 55 |  | breq1 |  |-  ( y = ( S ` k ) -> ( y <_ z <-> ( S ` k ) <_ z ) ) | 
						
							| 56 | 55 | ralrn |  |-  ( S Fn NN -> ( A. y e. ran S y <_ z <-> A. k e. NN ( S ` k ) <_ z ) ) | 
						
							| 57 | 14 54 56 | 3syl |  |-  ( ph -> ( A. y e. ran S y <_ z <-> A. k e. NN ( S ` k ) <_ z ) ) | 
						
							| 58 | 57 | rexbidv |  |-  ( ph -> ( E. z e. RR A. y e. ran S y <_ z <-> E. z e. RR A. k e. NN ( S ` k ) <_ z ) ) | 
						
							| 59 | 42 58 | mpbird |  |-  ( ph -> E. z e. RR A. y e. ran S y <_ z ) | 
						
							| 60 |  | supxrre |  |-  ( ( ran S C_ RR /\ ran S =/= (/) /\ E. z e. RR A. y e. ran S y <_ z ) -> sup ( ran S , RR* , < ) = sup ( ran S , RR , < ) ) | 
						
							| 61 | 45 53 59 60 | syl3anc |  |-  ( ph -> sup ( ran S , RR* , < ) = sup ( ran S , RR , < ) ) | 
						
							| 62 | 44 61 | eqtrd |  |-  ( ph -> ( S.2 ` F ) = sup ( ran S , RR , < ) ) | 
						
							| 63 | 43 62 | breqtrrd |  |-  ( ph -> S ~~> ( S.2 ` F ) ) |